مدل سازی و برآورد حجم زمین لغزش ها بر پایه مساحت در حوزه آبخیزچهاردانگه (استان مازندران)

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانش‌آموخته ژئومورفولوژی، دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانشیار دانشکده ادبیات و علوم انسانی، دانشگاه فردوسی مشهد، مشهد، ایران

3 دانشیار دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران

4 استادیار بخش مهندسی منابع طبیعی و محیط زیست، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

با توجه به اهمیت آگاهی از حجم زمین لغزش ها در مدیریت حوزه های آبخیز، تحقیق حاضر با هدف تعیین بهترین مدل برآورد حجم زمین لغزش ها بر پایه مساحت و مقایسه رابطه تجربی به دست آمده از این پژوهش با سایر روابط تجربی ارائه شده در دنیا صورت گرفته است. بدین منظور، ابتدا ویژگی های مربوط به مساحت، حجم و عمق 18 زمین لغزش حوزه آبخیز چهاردانگه تهیه شد و در مرحله بعد با استفاده از تصاویر ماهواره ایGoogle Earth موقعیت و مساحت 485 زمین لغزش در این حوزه شناسایی گردید. سپس رابطه بین مساحت با حجم زمین لغزش های اندازه گیری شده طی عملیات میدانی توسط 10 مدل برآورد منحنی بررسی و با استفاده از مقادیرR^2، آماره F و S.SE مدل ها مقایسه و مورد ارزیابی قرار گرفتند. در مرحله بعد مقادیر حجم و عمق زمین لغزش های منطقه با استفاده از رابطه تجربی به دست آمده در این تحقیق و دیگر روابط ارائه شده در پیشینه تحقیق، محاسبه و با مقادیر مشاهده ای مقایسه و مورد ارزیابی قرار گرفتند. نتایج نشان داد. مدل توانی با مقدار8/0R^2=. و00/0Sig= دارای S.SE پایین تری نسبت به دیگر مدل ها بوده و بهترین برازش را با داده های مشاهده ای دارد و مقادیر حجم برآورد شده با این رابطه همخوانی نسبتا مناسبی با مقادیر مشاهده ای دارد. عمق پیش بینی شده با استفاده از روابط(Whitehouse, 1983) و (Imazumi, 2007) به ترتیب با 89/7 و 09/7 متر نزدیک به عمق مشاهده ای با 60/7 متر است. همچنین میزان عمق میانگین 18 زمین لغزش استفاده شده در مدل با 76/5 متر بسیار نزدیک به عمق 485 زمین لغزش شناسایی شده در منطقه با میانگین عمق 64/5 متر بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling and Landslide Volume Estimation Based on Landslide Area in Chahardangheh Basin (Mazandran Province)

نویسندگان [English]

  • Zeinab Teimoori Yanesari 1
  • Seyed Reza Hosseinzadeh 2
  • Ataollah Kavian 3
  • Hamid Reza Pour Ghasemi 4
1 Ph. D. student of Geomorphology, Ferdowsi University of Mashhad
2 Associate Professor of Faculty of Literature and Humanism, Ferdosi University of Mashhad
3 Associate Professor, Faculty of Natural Sciences, Sari Agricultural Sciences and Natural Resources University
4 Assistant Professor of Natural Resources and Environmental Engineering, Shiraz University
چکیده [English]

Given the importance of knowing the landslide volumes in watershed management, this research was conducted in order to determine the best model to estimate the landslide volumes based on the area, and to compare the empirical relationship derived from this research with other empirical relations obtained in the world.
For this purpose, the area, volume and depth features of 18 landslides of Chahardangeh Basin was firstly prepared and then the location and area of 485 landslides were identified using Google Earth satellite images of this study area. Then, the relationship between the area and volume of landslides, measured by 10 models of curve estimation, were evaluated during field operations, and the models were compared and evaluated using the values of R2, F-statistic and S.SE. In the next step, the amount of volume and depth of landslides of the area were calculated using empirical correlations obtained in this study and other relations presented in the literature, and they were compared and evaluated with the observed data.
The results showed that the power law with R2= 0.8 and Sig = 0.00 has lower S.SE than other models, and provides the best fit to the observed data. Also, the estimated volume values with this relationship fit rather well with observed values. The estimated depth using Whitehouse (1983) and Imaizumi (2007) with 7.89 m and 7.09 m, respectively, was close to mean of observed depth with 7.60 m. The average depth of 18 Landslides used in the model with a depth of 5.76 meters is very close to 485 landslides which have been detected in the area with an average depth of 5.64 meters.

کلیدواژه‌ها [English]

  • Landslide
  • Area
  • Depth
  • Volume
  • power law
- آقانباتی، علی. 1377. چینه‌شناسی ژوراسیک ایران، سازمان زمین‌شناسی کشور، تهران.
2- احمدی، حسن. 1386. ژئومورفولوژی کاربری (فرسایش آبی)، انتشارات دانشگاه تهران، جلد اول، تهران.
3- امیدوار، ابراهیم و کاویان، عطااله. 1389. برآورد حجم لغزش­ها بر پایه مساحت در مقیاس منطقه­ای (بررسی موردی: استان مازندران)، نشریه مرتع و آبخیزداری، مجله منابع طبیعی ایران. دوره 63، شماره 4، صفحه 455 -439.
4- بروغنی، مهدی، پورهاشمی، سیما و زنگه اسدی، محمدعلی. 1397. ارزیابی خطر و خسارت زمین­لغزش در حوضۀ آبخیز بقیع به روش­های فاکتور قطعیت و رگرسیون لجستیک. مجله آمایش جغرافیایی فضا، سال 8، شماره 29، صفحه 18-1.
5- بهاروند، سیامک، پورکرمانی، محسن، آرین، مهران، اجل لوئیان، رسول و بوریزدان، عبدالرضا. 1388. زمین‌لغزش سیمره و نقش آن در تغییرات زیست محیطی و ژئومورفولوژیکی منطقه پلدختر، فصل­نامه زمین. سال چهارم، شماره 4، صفحه 24-13.
6- تیموری یانسری، زینب. 1397. مطالعه حساسیت به وقوع زمین­لغزش درحوزۀ آبخیز چهاردانگه با تأکید بر مقایسه تطبیقی روش­های ارزیابی. رساله دکتری، دانشگاه فردوسی مشهد، دانشکده ادبیات و علوم انسانی، گروه جغرافیا.
7- سازمان جنگل­ها، مراتع و آبخیزداری کشور، معاونت آبخیزداری کشور،  معاونت آبخیزداری. 1386. دفتر مهندسی و ارزیابی طرح­ها، گروه مطالعه امور زمین‌لغزش. فهرست زمین­لغزش­های کشور، شهریور1386.
8.Abele, G. 1974. Bergstürze in den Alpen: ihre Verbreitung, Morphologie und Folgeerscheinungen. Univ.-Verlag Wagner Italian translation by Nicoletti, P.G. (1990–1994) Bergsturznelle Alpi. RapportiInterni CNR-IRPI, Cosenza.
9.Brenning, A., Schwinn, M., Ruiz-Páez, A.P., and Muenchow, J. 2014. Landslide susceptibility near highways is increased by one order of magnitude in the Andes of southern Ecuador, Loja province. Natural Hazards and Earth System Sciences Discussions, 2: 1945-1975.
10.Cartier, E.G. 1971. Die Geologie des unteren Chalus Tals Zentral-Alborz/Iran (No. 164). Geologisches Institut der Eidg. Technischen Hochschule und der Universität Zürich.‏
11.Dedual, E. 1967. Zur geologie des mittleren und unteren Karaj-Tales, zentral-Elburz (Iran). Mitt. Geol. Inst. ETH Univ. Zurich, 79: 45-75.‏
12.Freund, J. 1992.  Mathematical statistics. -Goetz, N. J., Prentice Hall. 658.
13.Goetz, J.N., Guthrie, R.H., and Brenning, A. 2011. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3): 376-386.‏
14.Guthrie, R.H., and Evans, S.G. 2004. Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surface Processes and Landforms, 29(11): 1321-1339.‏
15.Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P. 1999. Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1): 181-216.
16.Guzzetti, F., Malamud, B.D., Turcotte, D.L., and Reichenbach, P. 2002. Power-law correlations of landslide areas in central Italy. Earth and Planetary Science Letters, 195(3-4): 169-183.‏
17.Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., and Rossi, M. 2008. Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology, 96(1): 105-122.‏
18.Guzzetti, F., Ardizzone, F., Cardinali, M., Rossi, M., and Valigi, D. 2009. Landslide volumes and landslide mobilization rates in Umbria, central Italy. Earth and Planetary Science Letters, 279(3): 222-229.‏
19.Hadian-Amri, M., Solaimani, K., Kavian, A., Afzal, P., and Glade, T. 2014. Curve estimation modeling between area and volume of landslides in Tajan River basin, North of Iran. ECOPERSIA, 2(3): 651-665.‏
20.Haflidason, H., Lien, R., Sejrup, H.P., Forsberg, C.F., and Bryn, P. 2005. The dating and morphometry of the Storegga Slide. Marine and Petroleum Geology, 22(1): 123-136.‏
21.Imaizumi, F., and Sidle, R.C., 2007. Linkage of sediment supply and transport processes in Miyagawa Dam catchment, Japan. Geophysical Research 112. (F03012). doi:10.1029/2006JF000495.
22.Imaizumi, F., Sidle, R.C., and Kamei, R. 2008. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms, 33(6): 827-840.‏
23.Innes, J.L. 1983. Lichenometric dating of debris‐flow deposits in the Scottish Highlands. Earth Surface Processes and Landforms, 8(6): 579-588.
24.Isaaks, E.H., and Srivastava, R.M. 2001. An introduction to applied geostatistics. 1989. New York, USA: Oxford University Press. Jones DR, A taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 23, 345-383.‏
25.Katz, O., Morgan, J.K., Aharonov, E., and Dugan, B. 2014. Controls on the size and geometry of landslides: insights from discrete element numerical simulations. Geomorphology, 220: 104-113.‏
‏26.Korup, O. 2005. Distribution of landslides in southwest New Zealand. Landslides, 2(1): 43-51.‏
27.Larsen, M.C., and Torres-Sánchez, A.J. 1998. The frequency and distribution of recent landslides in three montane tropical regions of Puerto Rico. Geomorphology, 24(4): 309-331.‏
28.Malamud, B.D., Turcotte, D.L., Guzzetti, F., and Reichenbach, P. 2004. Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6): 687-711.‏
29.Martin, Y., Rood, K., Schwab, J.W., and Church, M. 2002. Sediment transfer by shallow landsliding in the Queen Charlotte Islands, British Columbia. Canadian Journal of Earth Sciences, 39(2): 189-205.‏
30.Mayer, D.G., and Butler, D.G. 1993. Statistical validation. Ecological modelling, 68(1-2): 21-32.‏
31.Mondini, A. C., Marchesini, I., Rossi, M., Chang, K.T., Pasquariello, G., and Guzzetti, F. 2013. Bayesian framework for mapping and classifying shallow landslides exploiting remote sensing and topographic data. Geomorphology, 201, 135-147.‏
32.Razak, K.A., Santangelo, M., Van Westen, C.J., Straatsma, M.W., and de Jong, S.M. 2013. Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment.  Geomorphology, 190: 112-125.‏
33.Rice, R.M., Crobett, E.S., and Bailey, R.G. 1969. Soil slips related to vegetation, topography, and soil in southern California. Water Resources Research, 5(3): 647-659.‏
34.Rice, R.M., and Foggin, G.T. 1971. Effect high intensity storms on soil slippage on mountainous watersheds in Southern California. Water Resources Research, 7(6):1485-1496.‏
35.Sidle, R.C., and Ochiai, H. 2006. Landslides: processes, prediction, and land use (Vol. 18). American Geophysical Union.312pp.‏
36.Simonett, D.S. 1967. Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea. Landform studies from Australia and New Guinea, 64-84.‏
37.Ten Brink, U.S., Geist, E.L., and Andrews, B.D. 2006. Size distribution of submarine landslides and its implication to tsunami hazard in Puerto Rico. Geophysical Research Letters, 33(11).‏
38.Tsai, Z.X., You, G.J.Y., Lee, H.Y., and Chiu, Y.J. 2013. Modeling the sediment yield from landslides in the Shihmen Reservoir watershed, Taiwan. Earth Surface Processes and Landforms, 38(7): 661-674.‏
39.Whitehouse, I.E. 1983. Distribution of large rock avalanche deposits in the central Southern Alps, New Zealand. New Zealand journal of geology and geophysics, 26(3): 271-279.‏