برآورد میزان فرسایش کناری رودخانه با استفاده از مدل پایداری کناره و فرسایش پای کرانه. مطالعه موردی: رودخانه لاویج- شهرستان نور

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 دانشیار گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی

2 استاد گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی

3 دانشجوی دکتری ژئومورفولوژی، دانشکده علوم زمین، دانشگاه شهید بهشتی

4 استادیار گروه جغرافیای طبیعی، دانشگاه مازندران

چکیده

فرسایش کناری رودخانه یکی از مشکلات اصلی در مدیریت و سازمان‌دهی کانال‌های آبرفتی است. ازآنجاکه هرساله سازه‌ها و زمین‌های کشاورزی مجاور رودخانه لاویج با خطر تغییر بستر رودخانه و فرسایش کناری مواجه هستند، ازاین‌رو هرگونه عملیات اجرایی و تأسیساتی در حاشیه این رودخانه مستلزم آگاهی از جابه‌جایی‌های آتی الگوی این رودخانه و پیش‌بینی میزان فرسایش کناری رودخانه است. در سال‌های اخیر استفاده از مدل‌های عددی جهت تعیین تحرک کانال و درنتیجه برآورد میزان فرسایش‌پذیری کانال پیشرفت‌های زیادی داشته است. در این مقاله با استفاده از مدل پایداری کناره و فرسایش پای کرانه (BSTEM[1])، فرسایش کناری رودخانه لاویج (بازه‌ای 20 متری) شبیه‌سازی گردید. هدف از این شبیه‌سازی پیش‌بینی میزان پسروی کناره رودخانه لاویج (فرسایش رودخانه‌ای و گسیختگی ژئوتکنیکال) و همچنین برآورد میزان رسوب تولیدی ناشی از این پسروی است. بدین منظور داده‌های ژئومتریک مربوط به مقطع رودخانه، داده‌های دبی و جریان رودخانه، اطلاعات ژئوتکنیک لایه‌های تشکیل‌دهنده کرانه و اطلاعات پوشش کرانه وارد مدل گردید. سپس عمل شبیه‌سازی برای دو جریان در حالت دبی لبالبی و دبی حداکثر لحظه‌ای انجام شد. نتایج شبیه‌سازی شرایط رودخانه لاویج با استفاده از این مدل در دبی‌های لبالبی و حداکثر لحظه‌ای نشان داد که فاکتور امنیت (FS) کرانه در هر دو مورد کمتر از 1 است و این بدین معناست که در هر سیلابی که دبی جریان به دبی لبالبی و یا دبی حداکثر لحظه‌ای برسد امکان فرسایش کناری، ناپایداری و سقوط کرانه را فراهم می‌کند. میزان پسروی و فرسایش کرانه در جریان حاصل از دبی حداکثر لحظه‌ای بالاتر از (تقریباً 5/2 برابر) میزان فرسایش در جریان حاصل از دبی لبالبی بود؛ همچنین مشخص شد میزان پسروی کرانه در لایه‌های پایینی که عمدتاً از رسوبات غیرمتراکم گراول و قلوه‌سنگ هستند، به‌مراتب بیشتر از لایه‌ متراکم بالایی است. با توجه به اینکه مدل BSTEM ازجمله مدل‌هایی است که در آن اهمیت پارامترهای ژئوتکنیک در میزان پسروی کناره لحاظ شده است، مدل مناسبی برای کرانه‌های مرکب از چند لایه با تراکم متفاوت است. ازآنجاکه این مدل همزمان پارامترهای ژئومتری کانال، هیدرولوژی جریان و ژئوتکنیک رسوبات کرانه را در برآورد پایداری لحاظ می‌کند، پیشنهاد می‌گردد. به‌منظور بررسی اثر حفاظت‌های به کار گرفته‌شده در کاهش میزان فرسایش کناری رودخانه و انتخاب بهترین نوع حفاظت کناره از این مدل در مدیریت رودخانه‌ها استفاده شود.



 

کلیدواژه‌ها


عنوان مقاله [English]

Predict the rate of bank erosion in Lavij river during a particular flow by using BSTEM

نویسندگان [English]

  • Mohamad Mehdi Hosein Zadeh 1
  • Seied Hassn Sadogh 2
  • saeedeh matesh Beyranvand 3
  • Reza Esmaili 4
1
2
3
4
چکیده [English]

River bank erosion is a major management problem in alluvial corridors. Every year, structures and farmland Lavij riverbank are in risk of change the riverbed and bank erosion. Thus any operational and administrative facility on the edge of the river should be based on knowledge of future mobility river and prediction of erosion. In recent years the use of numerical modeling for determining channel mobility, and thus defining the extent of the erodible corridor have improved. In this paper was simulated Lavij river bank(reach 20m) using by bank stability and toe erosion model. The purpose of this simulation is to predict the regression of river bank and estimate the amount of sediment. For this purpose, the cross-section geometry data, discharge and flow data of the river, geotechnical data of forming layers and bank covering data enter the model. Model, for both the bankfull and peak discharge was simulated. The simulation results showed that river bank is unstable and undercutting and bank erosion is active. The recession and bank erosion, during the peak discharge was significantly higher than the current bankfull discharge. It also turned out, the bank recession in lower layers cohesionless sediments, mainly of gravel and cobble stone are far greater than the in upper adhesive layers.
River bank erosion is a major management problem in alluvial corridors. Every year, structures and farmland Lavij riverbank are in risk of change the riverbed and bank erosion. Thus any operational and administrative facility on the edge of the river should be based on knowledge of future mobility river and prediction of erosion. In recent years the use of numerical modeling for determining channel mobility, and thus defining the extent of the erodible corridor have improved. In this paper was simulated Lavij river bank(reach 20m) using by bank stability and toe erosion model.

کلیدواژه‌ها [English]

  • Bank Erosion "
  • " River Bank Instability Simulation "
  • " Bank Stability and Toe Erosion Model "
  • " Lavij river
  1. حسین‌زاده، محمدمهدی. سیدحسن صدوق و سعیده متش‌بیرانوند و رضا اسماعیلی. 1396. بررسی پایداری رسوبات بستر رودخانه لاویج با استفاده از روش تنش برشی بحرانی و دبی واحد بحرانی. پژوهش‌های دانش زمین، شماره 29.
  2. خزایی، مجید. احمد نوحه‌گر و رسول مهدوی نجف‌آبادی و عبدالرسول تلوری. 1395. بررسی پایداری کناری و فرسایش پنجه‌ای ناشی از جریان سطحی با استفاده از مدل BSTEM (مطالعه موردی: رودخانه بشار)، اکو هیدرولوژی. شماره 1.
  3. خزیمه‌نژاد، حسین. مهوش شفاعی بجستان. 1389. بررسی شرایط آستانه حرکت رسوبات غیر چسبنده در کانال‌های روباز دارای شیب ملایم و مقطع مستطیلی مهندسی آبیاری و آب، شماره 2.
  4. شرفی، سیامک. ابوالفضل شامی و مجتبی یمانی. 1393. بررسی تغییرات مورفولوژیکی رودخانه اترک در یک بازه زمانی 20 ساله. آمایش جغرافیایی فضا، دوره 4، شماره 14.
  5. صمدی، امیر. ابراهیم امیری تکلدانی. 1394. فرسایش توده‌ای سواحل و رودخانه‌ها فرآیندها و سازوکارها. انتشارات دانشگاه تهران.
  6. نظری، اکبر. محمدمهدی حیدری. 1390. آستانه حرکت رسوبات یکنواخت. هشتمین کنفرانس هیدرولیک ایران،  تهران، دانشکده فنی دانشگاه تهران.

 

  1. Clark, L.A. and Wynn, T.M. 2007. Methods for determining stream bank critical shear stress and soil erodibility: Implications for erosion rate predictions, Trans. Am. Soc. Agric. Biol. Eng., 50: 95–106.
  2. Crosato, Alessandra. 2007. Effects of smoothing and regridding in numerical meander migration models. Water resources research, 43. 
  3. Darby Stephen, E. Marco, J Van de Wiel, M.J. 2003. Models in fluvial geomorphology, John Wiley and Sons: Chichester.
  4. Darby, Stephen, E. Meropi, N Spyropoulos, Neil. W Bressloff and Massiom Rinaldi. 2004. Fluvial bank erosion in meanders: A CFD modeling approach, in Aquatic Habitats. Analysis and Restoration, vol. 1, edited by D. Garcia de JalonLastra, and P.V. Martinez, Int. Assoc. of Hydraul. Eng. and Res., Madrid, Spain.
  5. Garcia, and Marcelo H. 2008. Sediment transport and morphodynamics. Sedimentation Engineering: Processes, Measurements, Modeling and Practice. ASCE Manuals and Reports on Engineering Practice No. 110. American Society of Civil Engineers, Reston, VA.
  6. Hanson, Gregory J. and Andrew Simon. 2001. Erodiblity of cohesive sediment in the loess area of the Midwestern USA. Hydrological Processes 15.
  7. Julian, Jason P. and Raymind Torres. 2006. Hydraulic erosion of cohesive riverbanks. Geomorphology, 76.
  8. Kandolf , G. Mathias and Hervé, Piegay. 2003. Tools in fluvial geomorphology, Wiley & Sons.
  9. Kean, Jason, W. and Dungan Smith, J. 2006a. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences, J. Geophys. Res., 111: F04009.
  10. Kean, Jason, W. and Dungan Smith, J. 2006b. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences, J. Geophys. Res., 111: F04010.
  11. Kirkby, Michael J. 1996. Earth Surface Processes and Landforms, John Wiley and Sons, Chichester.
  12. Konsoer, Kory M.  Rhoads, Bruce Lane, Eddy J.  Langendoen, James L. Best, Mike, E Ursic, Jorge D Abad and Marcelo H. Garcia. 2015. Spatial variability in bank resistance to erosion on a large meandering, mixed bedrock-alluvial river. Geomorphology, 252.
  13. McBride, Maeve. W. Cully Hession, Donna M. Rizzo, and Douglas M. Thompson. 2007. The influence of riparian vegetation on near-bank turbulence: A flume experiment. Earth Surf. Processes Landforms, 32(13).
  14. Midgley Taber. Garey A. Fox and Derek M. Heeren. 2012. Evaluation of the bank stability and toe erosion model (BSTEM) for predicting lateral retreat on composite streambanks. Biological Systems Engineering, Geomorphology, 145-146.
  15. Papanicolaou, Athanasios, N.  Mohamd Elhakeem and Robert Hilldale. 2007. Secondary current effects on cohesive river bank erosion. Water Resour., Res., 43: W12418.
  16. Parker Chris. Simon Andrew and Thorne Colin R. 2008. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi. Geomorphology, 101.
  17. Partheniades, E. 1965. Erosion and deposition of cohesive soils. Journal of the Hydraulics Division of the American Society of Civil Engineers, 91 (HY1).
  18. Piegay, Hervé, Stephen E. Darby, Erik Mosselman and Nicola Surian. 2005. A review of techniques available for delimiting the erodible river corridor: a sustainable approach to managing bank erosion. River research and application, 21.
  19. Tolhurst, Trevor. Kevin. S Black, A.S. Shayler, Se Mather, Iris Black, K Baker, and David M. Paterson. 1999.  Measuring the in situ erosion shear strength of intertidal sediments with the Cohesive Strength Meter (CSM). Estuarine Coastal Shelf Sci., 49.
  20. Rinaldi, Massimo and Stephen E. Darby. 2008. Modelling river-bank-erosion processes and mass failure mechanisms: Progress towards fully coupled simulations, in Gravel-Bed Rivers From Process Understanding to River Restoration. Earth Surf. Processes, Vol. 11, edited by H. Habersack et al., pp. 213–239, Elsevier, New York.
  21. Rinaldi, Massimo. Beatrice Mengoni, Laura, Luppi, Stephen E. Darby and Erik Mosselman. 2008. Numerical simulation of hydrodynamics and bank erosion in a river bend. Water Resources Research, 44: W09428.
  22. -Simon, Andrew, Andera Curini, Stephen E. Darby and Eddy. J  Langendoen. 2000. Bank and near-bank processes in an incised channel. Geomorphology 35: 1.
  23. Wynn, Theresa and Mostaghimi, S. 2006. The effects of vegetation and soil type on stream bank erosion, southwestern Virginia, USA. Journal of the American Water Resources Association (JAWRA), 42(1).