بررسی میزان مخاطره چاک جریان در قاعده دلتای سفیدرود

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 استادیار ژئومورفولوژی، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران

2 دانشیار ژئومورفولوژی، دانشکده علوم انسانی و اجتماعی، دانشگاه مازندران

چکیده

چاک جریان، جریانی قوی و باریک است که در منطقۀ خیزاب و در جهت تقریبا عمود بر ساحل شکل می‌گیرد. منطقۀ مورد مطالعه در این پژوهش، خطوط ساحلی بخش جنوب غربی دریای خزر در قاعدۀ دلتای رودخانه­ای سفیدرود است. آمار بالای غرق شدگان دریای خزر صرف نظر از عدم آشنایی با فن شنا ناشی از ناآگاهی شناگران با ژئومورفولوژی سواحل، رژیم امواج، چاه های مکنده و چاک جریان است که شنای مطمئن و ایمن در دریا را با شنا در آب‌های آرام استخرها و رودخانه‌ها و دریاچه‌های پشت سد کاملا متمایز می‌کند. هدف از این پژوهش شناسایی چاک جریان و بررسی علل رخداد این پدیده است. ابزار و داده­های اصلی این پژوهش از نقشۀ هیدروگرافی چارت دریایی کیاشهر به مقیاس 100000/1 و دستگاه GPS به همراه نرم­افزار ArcGIS تشکیل شده است. روش کار مبتنی بر شناسایی چاک جریان در بازدیدهای میدانی و در مرحلۀ بعد انتقال نقاط به محیط نرم­افزاری و اضافه نمودن آن به پارامترهای ژئومورفیک (توپوگرافی بستر دریا، شیب، هندسۀ خط ساحلی، قطر ذرات و راستای امواج) به همراه تخمین میزان مخاطرۀ چاک جریان با استفاده از مدل مورفودینامیک ساحل ارائه شده توسط رایت و شورت، جهت بررسی و تجزیه و تحلیل میزان مخاطره و دلایل وقوع چاک جریان در قاعده دلتای سفیدرود است. یافته های تحقیق نشان می­دهد قطر ذرات ماسه در مناطق وقوع چاک جریان کوچک تر و شیب این مناطق نیز کمتر از مناطق مجاور می­باشد. بررسی پارامتر امگا در مدل مورفودینامیک ساحلی، محدودۀ مورد بررسی را با امگای بین  97/0 تا 85/2، در ردۀ سواحل با خطر کم تا متوسط از لحاظ میزان مخاطرۀ چاک جریان قرار می­دهد. هندسۀ خط ساحلی نیز در محل وقوع جریان­های شکافنده، انحنا و تورفتگی زیادی را به سمت خشکی نشان می­دهد که می­تواند در شناسایی این خطر کمک‌کننده باشد. در مناطقی که بین پشته­های دریایی، گودی­های هرچند کوچک ایجاد شده باشد شرایط برای ایجاد و تقویت این جریان­ها فراهم می­شود؛ لذا می­توان نتیجه­گیری نمود که به دلیل ارتباط تنگاتنگ نقاط وقوع این پدیده و وجود پشته­ها و ناوه­های در منطقۀ شکست، می­توان محل وقوع جریان­ها را شناسایی نموده و حتی صحت نقشه­های عمق­سنجی را ارزیابی کرد. پیشنهاد می­شود با توجه به شناسایی چاک جریان، علائم هشداردهنده در سواحل مورد مطالعه نصب شود تا از بروز حوادث احتمالی جلوگیری گردد.

کلیدواژه‌ها


عنوان مقاله [English]

survey of rip current hazard in Base of Sefidroud River Delta

نویسندگان [English]

  • ghasem lorestani 1
  • reza esmaili 2
1
2 Associate Prof., Faculty of Humanities and Social Sciences, University of Mazandaran
چکیده [English]

The rip currents are a strong and narrow stream that forms in the surf zone and is approximately perpendicular to the coast. The study area is the coastline of the southwestern part of the Caspian Sea in the Base of Sefidroud River Delta. The purpose of this study is to identify rip current and to investigate the causes of this phenomenon. The main tools and data of this research are Hydrographic map of kiashar sea chart to scale 1/10000 and GPS device with ArcGIS software. The method of this work is based on the recognition of rip current in field observations. In the next step, transferring the points to the software environment and adding it to the geomorphic parameters (sea bed topography, slope, coastline geometry, particle diameter and direction of the waves) to analyze the reasons for the occurrence of rip current in the base of the Sefidroud River Delta. The results show that the diameter of sand particles is smaller in the areas of rip current and the slope of these regions is less than adjacent regions. The coastline geometry also shows a large amount of curvature and indentation in the presence of rip currents that can be helpful in identifying this risk. In areas where there are small ridges between the sea stacks, conditions are created to create and strengthen these currents. Therefore, it can be concluded that because of the close connection between the occurrence of this phenomenon and the presence of stacks and troughs in the Wave Breakdown Zone, It is possible to identify the location of the currents and even assess the accuracy of the depth maps.

کلیدواژه‌ها [English]

  • Caspian Sea
  • rip current
  • Marine chart
  • Sefidroud Delta
  1. جداری عیوضی، جمشید. یمانی، مجتبی و خوش­رفتار، رضا، 1384. تکامل ژئومورفولوژی دلتای رود سفیدرود در کواترنر، پژوهش های جغرافیایی، شماره 53، صص 120-99، تهران.
  2. حاجی کریمی، زهرا. هژیر محمدی، سیاوش شایان، مجتبی یمانی و رضا خوشرفتار. 1399. تحلیل فرآیندهای مورفودینامیکی مؤثر در تغییرات خط ساحلی دریای خزر در غرب گیلان. مطالعه موردی: دلتای رودخانه‌ای کرگانرود، مجله آمایش جغرافیایی فضا، دوره 10، شماره 36، صص 249-266، گرگان.
  3. غلامی، زهرا. چگینی، وحید.، 1389. پهنه­بندی جریان­های شکافنده در سواحل مرکزی گیلان، علوم و فناوری دریا، سال شانزدهم، شمارۀ 51، صص 20-10، نوشهر.
  4. لرستانی، قاسم. رضا اسماعیلی و فاطمه اعتمادی. 1394. بررسی میزان تغییرات خط ساحلی دریای خزر در مصب رودخانه ها (مطالعه موردی: مصب رودخانه‌های هراز، بابلرود و تالار). مجله آمایش جغرافیایی فضا، دوره 5، شماره 18، صص 136-123. گرگان.
  5. یمانی، مجتبی. مهران مقصودی و حمید عمونیا.1395. تعیین حریم توسعه نوار ساحلی خزر با استفاده از داده های ژئومورفولوژیک و تغییرات تراز سطح آب دریا (مطالعه موردی: خط ساحلی بابل رود تا تالار)، مجله آمایش جغرافیایی فضا، دروه 6، شماره 19، صص 44-32. گرگان.
    1. Arozarena, Isabel, Chris Houser, Alejandro Gutiérrez Echeverria and Christian Brannstrom, 2015. The rip current hazard in Costa Rica. Natural Hazards, 77: 2, New York.
    2. Austin, Martin, timothy Scott, James Brown, Jenna Brown and Jamie MacMahan, 2009. Macrotidal rip current experiment: circulation and dynamics. Journal of Coastal Research, Special Issue 56, Coconut Creek.
    3. Barzegar, B. 2011. The Modelling of Bathymetry Changes in Creation of rip Currents. Australian Journal of Basic and Applied Sciences, 5: 8. Amman.
    4. Benedet, Lindino, Charles Finkl and Antonio henriquo Klein, 2004. Morphodynamic classification of beaches on the Atlantic coast of Florida: geographical variability of beach types, beach safety and coastal hazards. Journal of Coastal Research, Special Issue 39, Coconut Creek. 
    5. Bowen, Anthony J. 1969. Rip currents: 1. Theoretical investigations. Journal of Geophysical Research, 74: 23, Malden ma.
    6. Brander, Robert W and Jamie MacMahan, 2011. Future challenges for rip current research and outreach. Rip Currents, Beach Safety, Physical Oceanography and Wave Modeling, edited by: Leatherman, S. and Fletemeyer, J., CRC Press, Boca Raton, FL, Florida.
    7. Bruneau, Nicolas, Bruno Castelle, Philippe Bonneton, Rodrigo Pedreros, Rafael Almar, Natalie Bonneton, Patrice Bretel, Jean-Paul Parisot and Nadia Sénéchal, 2009. Field observations of an evolving rip current on a meso-macrotidal well-developed inner bar and rip morphology. Continental Shelf Research, Vol  29, No 14, Oxford.
    8. Drønen, Nils, Harshinie Karunarathna, Jørgen Fredsøe, B Mutlu Sumer and Rolf Deigaard, 2002. An experimental study of rip channel flow. Coastal Engineering, Vol  45, No 3-4, Amsterdam.
    9. Folk, Robert Louis and William C Ward, 1957. Brazos River bar [Texas]; a study in the significance of grain size parameters. Journal of Sedimentary Research, Vol  27, No 1, Tulsa.
    10. Ghorbani, Ali and Amirhosein Rasulyjamnany, 2012. The modelling of rip channel in creation of rip currents. Indian journal of science and technology, Vol  5, No 4, Chennai.
    11. Li, Zhiqiang, 2016. Rip current hazards in South China headland beaches. Ocean & Coastal Management, Vol  121, No 1, Oxford.
    12. Lin, Hsueh-Mei, I-Hsing Hwang and Su-Min Shen, 2009. The changes at long time scale on the beach type and rip current of the Fulong Beach in the North coast of Taiwan. Journal of Geography Research, Vol  50, No, 3, Hoboken.
    13. MacMahan, Jamie H, Ed B Thornton and Ad JHM Reniers, 2006. Rip current review. Coastal Engineering, Vol  53, No 2-3, Amsterdam.
    14. MacMahan, Jamie, Ed B Thornton, Tim P Stanton and Ad JHM Reniers, 2005. RIPEX: Observations of a rip current system. Marine Geology, Vol  218, No 1-4, Amsterdam.
    15. Scott, Timothy, Paul Russell, Gerd Masselink, MJ Austin, S Wills and A Wooler, 2011. 14 rip current hazards on large-tidal beaches in the United Kingdom. Rip Currents: Beach Safety, Physical Oceanography, and Wave Modeling, CRC Press, Boca Raton, Florida.
    16. Udden, Johan August, 1914. Mechanical composition of clastic sediments. Bulletin of the Geological Society of America, Vol  25, No 1, Boulder.
    17. Wentworth, Chester K, 1922. A scale of grade and class terms for clastic sediments. The journal of geology, Vol  30, No 5, Chicago.
    18. Winter, Gundula, Matthieu de Schipper Ap van Dongeren and Jaap van Thiel de Vries, 2012. A field and numerical study into rip currents in wind-sea dominated environments. Coastal Engineering, Vol 1, No 33, Amsterdam.
    19. Wright, Lynn D and Andrew D Short, 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, Vol  56, No 1-4, Amsterdam.
    20. Wright, Lynn D, Andrew D Short and MO Green, 1985. Short-term changes in the morphodynamic states of beaches and surf zones: an empirical predictive model. Marine Geology, Vol  62, No 3-4, Amsterdam.