شناسایی ساختار مکانی دمای رویه‌ی زمین در حوضه‌ی زاینده‌رود با بهره‌گیری از داده-های عددی ماهواره‌ایی

نوع مقاله: مقاله علمی پژوهشی

نویسندگان

1 عضو هیات علمی دانشگاه پیام نور

2 دانشجوی دکتری آب و هواشناسی

چکیده

دمای خاک و چگونگی تغییرات آن نسبت به زمان و مکان یکی از مهم‌ترین عواملی است که نه تنها تبادل ماده و انرژی را در خاک تحت تأثیر قرار می‌دهد، بلکه می‌توان گفت میزان و جهت کلیه‌ی فرآیندهای فیزیکی خاک به صورت مستقیم یا غیر مستقیم وابسته به دماست. دمای خاک به عوامل متعددی از جمله توپوگرافی، تابش خورشید، دمای هوا، میزان رطوبت خاک، نوع و ویژگی‌های حرارتی خاک نظیر ظرفیت گرمایی، ضریب هدایت حرارتی و گرمای ویژه بستگی دارد. هدف از پژوهش کنونی شناسایی ساختار مکانی دمای رویه‌ی زمین در حوضه‌ی زاینده‌رود می‌باشد. برای این منظور داده‌های دمای سطح زمین سنجنده‌ی مودیس تررا برای بازه‌ی زمانی 1379 تا 1393 به صورت روزانه از تارنمای سازمان فضایی ناسا دریافت گردید. داده‌های دمای سنجنده‌ی مودیس تررا در تفکیک مکانی 1 × 1 کیلومتر و با سیستم تصویر سینوسی در دسترس می‌باشد. با برش زدن داده‌ها بر روی حوضه‌ی زاینده‌رود تعداد 48347 یاخته در درون حوضه قرار گرفت. مبنای قضاوت ما برای بررسی دما در حوضه همین تعداد یاخته‌ها(48347) بود. پس از برش زدن و آماده‌سازی داده‌ها بر روی حوضه‌ی زاینده‌رود، میانگین بلندمدت دمای حوضه برای هر یک از ماه‌های سال محاسبه گردید و به طور جداگانه نقشه‌های هر یک از فصول در نرم‌افزار مت‌لب ترسیم گردید. یافته‌ها نشان داد کم‌ترین میانگین دمای رویه در ماه دی و بیش‌ترین میانگین دمای رویه در ماه مرداد دیده می‌شود. همچنین خوشه‌بندی ماه‌های سال به روش پیوند وارد بر روی آرایه‌ی میانگین ماه‌های سال در ابعاد 48347×12 نشان داد روی هم رفته سه دوره‌ فصول از نظر دمای رویه در حوضه‌ی زاینده‌رود قابل شناسایی است. در مجموع یافته‌های این پژوهش شناخت ما را از وضعیت ساختار دمای رویه در حوضه‌ی زاینده‌رود بالا برد.

کلیدواژه‌ها


عنوان مقاله [English]

Identification of spatial structure of land surface temperature over Zayanderoud River Basin based on numerical remote sensing data

نویسنده [English]

  • Amir hossein Halabian 1
چکیده [English]

Soil temperature and its changes both in space and time is one of the most important factors that not only affect matter and energy transfer in soil but also influence the direction and amount of all of the physical processes in soil whether directly or indirectly. Soil temperature depend to several factors including topography, sun radiation, air temperature, amount of soil moisture, the thermal properties such as heat capacity, coefficient of thermal conduction and specific heat. The goal of this study is to identify the spatial structure of land surface temperature in Zayanderoud River Basin. In order to achieve this goal the daily time series of land surface temperature from MODIS Terra was exploited from 1379 to 1393 from NASA web site. MODIS Terra data are available in 1*1 km in sinusoidal projection system. By only appalling the data over Zayanderoud Basin 48347 pixels covered the Basin. The corner stone for our analysis of temperature was 48347 pixels. After preparation of data over Zayanderoud Basin the long term mean temperature of each month was then calculated and the long term mean map of each season was drawn in Matlab. The findings indicated that the warmest month in the Basin is Mordad but the coldest is the month of Dey. The clustering of the pixels of months using Ward method based on the matrix of 12 * 48347 dimensions showed that three separate seasons can be identified in the Basin. Over all the findings and investigations of this paper increased our knowledge toward the spatial structure of land surface temperature in Zayanderoud River Basin.

کلیدواژه‌ها [English]

  • Land surface Temperature
  • MODIS Sensor
  • Zayanderoud River Basin
  • Clustering
  1. Atlas, R, Wolfson, N, Terry, J 1993. The effect of SST and soil moisture anomalies on GLA model simulations of the 1988 U.S. summer drought. Journal of Climate, Vol 6, No, 8, America
  2. Coll, C, Caselles, V, Galve, J, Valor, E, Niclos, R, Sanchez, J, Rivas, 2005. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data, Remote Sensing of Environment, 97, No, 3, Netherlands
  3. Coll, C, Wan, Z, and Galvem, M, 2009. Temperature-based and radiance- based validations of the V5 MODIS land surface temperature product, Journal of Geophysical Research, Vol,114, No, 20, America
  4. Crosman, T,  Horel D, 2009. MODIS-derived surface temperature of the Great Salt Lake, Remote Sensing of Environment, Vol, 113, No, Netherlands
  5. Dai, A, Trenberth, K, Karl, T, 1999. Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. Journal of Climate, Vol, 12, 8,  America
  6. Galve, M, Coll, C, Caselles, V, Valor, E, Niclos, R, Sanchez, M., Mira, M, 2007. Simulation and validation of land surface temperature algorithms for MODIS and AATSR data, Tethys, Vol,4, Spain
  7. Jin, M. 2004. Analysis of land skin temperature using AVHRR observations. American Meteorological Society, 85: 4, America
  8. Jin, M. and Dickinson, R. 1999. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 1. Without clouds. Journal of Geophysical Research, 104: D2, America
  9. Jin, M, 2000. Interpolation of surface radiative temperature measured from polar orbiting satellites to a diurnal cycle 2. Cloudy-pixel treatment. Journal of Geophysical Research, Vol, 105, No, D3, America
10.Hook, S, Vaughan, R, Tonooka, H, Schladow, G,  2007. Absolute radiometric inflight validation of mid infrared and thermal infrared data from ASTER and MODIS on the Terra Spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site, IEEE Transactions on Geoscience and Remote Sensing, Vol, 45, No, 6, America

11.Langer, M, Westermann, S,  Boike, J,  2010. Spatial and temporal variations of summer surface temperatures of wet polygonal tundra in Siberia – implications for MODIS LST based permafrost monitoring, Remote Sensing of Environment, Vol, 114, No, 9, Netherlands

12.Price, J, 1984. Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research, Vol, 89, No, D5, America

13.Segal, M, Garratt,  R, Kallos, G, Pielke, R, 1989. The impact of wet soil and canopy temperatures on daytime boundary-layer growth. Journal of Atmospheric Science, Vol, 46, No, 24, America

14.Sommers, LE, Gilmour, CM, Wildung, RE,  Beck, SM,

15.1981. The effect of water potential on decomposition processes in soils, Water Potential Relations in Soil Microbiology, America

16.Wan, Z. and Dozier, J. 1996. A generalized split-window algorithm for retrieving landsurface temperature from space. IEEE Transactions on Geoscience and Remote Sensing, 34: 4, America

17.Wan, Z., Zhang, Y., Zhang, Q. and Li, Z.L. 2004. Quality assessment and validation of the MODIS global land surface temperature, International Journal of Remote Sensing, 25: 1, United Kingdom

18.Wan, Z. 2008. New refinements and validation of the MODIS land surface temperature/emissivity products, Remote Sensing of Environment,  Vol, 112, No, 1, Netherlands

19.Westermann, S., Langer, M. and Boike, J. 2011. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard – Implications for MODIS LST based permafrost monitoring, Remote Sensing of Environment, 115: 3, Netherlands

21.http://modis.gsfc.nasa.gov/data/atbd/land_atbd.php