بررسی تغییرات زمانی و مکانی AOD 1 و ارتباط آن با خصوصیات ابرهای سرد بر روی ایران با استفاده از داده‌های سنجش از دور سنجنده MODIS

نوع مقاله: مقاله علمی پژوهشی

نویسنده

استادیار، گروه جغرافیا، دانشگاه پیام نور

چکیده

آیروسل­ها به عنوان هستک­های تراکمی در بسیاری از پدیده­های اقلیمی نقش مهمی دارند. در  اینتحقیق با استفاده از داده­های اتمسفری روزانه ماهواره (MYD08-LEV3-COL5.1Aqua,) در دورۀ آماری 2002 تا 2014 شاخص AOD در طول موج 550 نانومتر بر روی ایران استخراج و به صورت فصلی مورد بررسی قرار گرفت. ابرهای با دمای کمتر از 273 درجه کلوین و پایین­تر از تراز 300 هکتوپاسکال نیز به عنوان ابرهای سرد انتخاب و خصوصیات آن شامل CER, CF, WV, CTT از این داده­ها استخراج و همبستگی فضایی آن با میزان AOD محاسبه گردید. نتایج نشان داد که توزیع فضایی و زمانی هواویزه­ها به شدت تحت تاثیر سامانه­های بارش­زا و طوفان­های گرد و غبار فرامنطقه­ای است به گونه­ای که حداقل آن در فصول سرد و حداکثر آن در فصول گرم سال است که به بیش از 0.45~ می­رسد. ارتباط هواویزه­ها با خصوصیات ابر نیز بررسی گردید. همبستگی میان AOD و بخار آب برای فصول سرد سال در اکثر مناطق مثبت و قوی بود و در فصول گرم بر روی مناطق بیابانی و کوهستانی و سواحل ارتباط مثبت بود و سایر مناطق همبستگی منفی را نشان دادند. ارتباط AOD با دمای سطح ابر مشابه بخار آب بود و در فصول سرد بیشترین همبستگی منفی را به ویژه بر روی نواحی کوهستانی و ساحلی نشان داد. برای CER نیز در فصول سرد ارتباط معنی داری دیده نشد و در فصل بهار نواحی کوهستانی غربی ارتباط منفی و در فصل تابستان نواحی بیابانی مرکزی و شرقی ارتباط مثبت را نشان دادند. 

کلیدواژه‌ها


عنوان مقاله [English]

Temporal And Spatial Variation Of AOD And Its Relation To The Characteristics Of The Cold Clouds Using Satellite Data Of MODIS

نویسنده [English]

  • alireza dehghanpour farasha
چکیده [English]

Abstract. Aerosols on a global scale play an important role through the absorption and reflection of solar energy, And impacts on the formation in clouds condensation nucleus in many ecological phenomena. In the present study, we used satellite data, daily atmospheric (Aqua, MYD08-LEV3-COL5.1) In the period 2002 to 2014. Index AOD at 550 nm wavelength extracted in Iran and examined seasonally. Clouds with temperatures less than 273 ° K and below the level of 300 hPa as cold clouds selected and extracted specification, including the data: CER, CF, WV, CTT, And was calculated its spatial relationship with the AOD. The results showed The spatial and temporal distribution of aerosols greatly influenced by generating precipitation system and dust storms was from out of the area. Aerosol and cloud properties were also related. Correlation between AOD and water vapor for the cold season in most parts of area was positive and strong also, the desert and the mountains and the coast was a positive correlation in summer. And other areas showed a negative correlation. AOD correlation with cloud water vapor was same and cold mountainous and coastal areas, especially on the highest showed negative correlation. In summer, mountain and coastal areas also were positively correlated And the rest of region showed a negative relationship. AOD correlation with ratio cloud for the cold season and only a very weak negative correlation was strong on the desert regions most of the negative correlation was found acceptable in summer. CER also a significant association was found for the cold season. Western the mountainous regions in spring and summer in the desert regions of central and eastern negative correlation showed positive correlation.

کلیدواژه‌ها [English]

  • Cloud properties
  • AOD
  • MODIS

1.پیرنظر، مجتبی. روستایی شهرام و فیضی‌زاده بختیارو رئیسی نافچی فاطمه، 1397. بررسی درجه حرارت سطح زمین و ارتباط آن با کلاس‌های پوشش کاربری زمین شهری با استفاده از داده‌های سنجنده لندست 8 (مطالعه موردی: شهر تهران). آمایش جغرافیایی فضا، دوره هشتم، شماره 29، 227-240.

2. یوسفی مریم. مکانیکی جواد و اشرفی علی و  نیسانی سامانی نجمه، 1396. آشکارسازی و مدلسازی تغییرات کاربری اراضی با استفاده از داده‌های سنجش از دور، مدل زنجیره مارکوف و سلول‌های خودکار (مطالعه موردی: شهر بجنورد)، آمایش جغرافیایی فضا، دوره هفتم، شماره 26، 1-16.

  1. Alam, K., Iqbal, M.J., Blaschke, T., Qureshi, S., and Khan, G. 2010. Monitoring spatio- temporal variations in aerosols and aerosol cloud interaction over Pakistan using MODIS data. Adv.Space Res.46, 1162–1176.
  2. Alam, k., Rehana, K., Blaschke, T., and Mukhtiar, A. 2014. Variability of aerosol optical depth and their impact on cloud properties in Pakistan. Atmospheric and Solar-Terrestrial Physics 107(2014)104–112
  3. Alam, laschke, T., Madl, P., Mukhtar, A., Hussain, M., Trautmann, T., and Rahman, S. 2011. Aerosol size distribution and mass concentration measurement sin various cities of Pakistan. Environ. Monit. 13, 1944–1952.
  4. Alam, K., Iqbal, M.J., Blaschke, T., Qureshi, S., and Khan, G. 2010. Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Adv.SpaceRes. 46, 1162–1176.
  5. Altaratz, O., Koren, I., Remer, L.A., and Hirsch, E. 2014. Cloud invigoration by aerosols—Coupling between microphysics and dynamics, Atmospheric Research 140–141, 38–60.
  6. Andreae, M.O., Rosenfeld, D., Artaxo, P., Costa, A.A., Frank, G.P., Longo, K.M., and Silva-Dias, M.A.F. 2004. Smoking rain clouds over the Amazon. Science, 303(5662), 1337–1342.
  7. Badarinath, K.V.S., Shailesh Kumar Kharol, D.G., Kaskaoutis, Anu Rani Sharma, V. Ramaswamy, and Kambezidis, H.D. 2010. Long-range transport of dust aerosols over the Arabian Sea and Indian region - A case study using satellite data and ground-based measurements. Global and Planetary Change, 72, 164–181.
  8. Balakrishnaiah G., Raghavendrakumar, K., Suresh Kumar Reddy, B., Rama Gopal, K., Reddy, R.R., Reddy, L.S.S., Swamulu, C., NazeerAhammedb, Y., Narasimhulu, K., KrishnaMoorthy, K., and Suresh Babu, S. 2012. Spatio-temporal variations in aerosol optical and cloud parameters over Southern India retrieved from MODIS satellite data. Atmospheric Environment 47: 435e445.
  9. Bouchlaghem, K., Nsom, B., Latrache, N. and Houda, H.K. 2009. Impact of Saharan dust on PM10 concentration in the Mediterranean Tunisian coasts. Atmospheric Research, 92, 531–539.
  10. Chou, M.-D., Chan, P.-K. and Wang, M. 2002. Aerosol radiative forcing derived from SeaWiFS-retrieved aerosol optical properties. J. Atmos. Sci. 59, 748–757.
  11. Davidi, A., Koren, I., and Remer, L. 2009. Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile. Atmos. Chem. Phys. 9(21), 8211–8221.
  12. Davidi, A., Koren, I., and Remer, L. 2009. Direct measurements of the effect of biomass burning over the Amazon on the atmospheric temperature profile. Atmos. Chem. Phys. 9(21), 8211–8221.
  13. Feingold, G., Cotton, W.R., Kreidenweis, S.M., and Davis, J.T. 1999. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci. 56(24), 4100–4117.
  14. Feingold, G., Jiang, H.L., and Harrington, J.Y. 2005. On smoke suppression of clouds in Amazonia. Geophys. Res. Lett. 32(2).
  15. Francois-Marie Bréon, Anne Vermeulen, Jacques, 2011. Descloitres. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sensing of Environment 115, 3102–3111
  16. Hansen, J., Sato, M. and Ruedy, R. 1997. Radiative forcing and climate response. J. Geophys. Res.-Atmos. 102(D6), 6831–6864.
  17. Hoeve, T, Remer, L.A., and Jacobson, M.Z. 2011. Microphysicalandradioactive effect of aerosolsonwarmcloudsduringtheAmazonbiomassburningseasonas observed by MODIS: impact of watervapor and landcover. Atmos. Chem. Phys. 11, 3021–3036. 
  18. Kaufman, Y.J., Koren, I., Remer, L.A., Rosenfeld, D., and Rudich, Y. (2005b). The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102(32), 11207–11212.
  19. Kaufman, Y.J., Koren, I., Remer, L.A., Rosenfeld, D., and Rudich, Y. 2005. The effect of smoke, dust, and pollution aerosol on shallowcloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. U.S.A. 102(32), 11207–11212.
  20. Kaufman, Y.J., Remer, L.A., Tanre´, D., Li, R.-R., Kleidman, R., Matto, S., Levy, R., Eck, T., Holben, B.N., Ichoku, C., Martins, V., and Koren, I. (2005a). A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens. 43, 2886–2897.
  21. Kawamoto, K., and Suzuki, K. 2013. Comparison of water cloud microphysics over mid-latitude land and ocean using CloudSat and MODIS observations. Journal of Quantitative Spectroscopy &Radiative Transfer 122, 13–24.
  22. Khan Alam, Muhammad Jawed Iqbal, Thomas Blaschke, Salman Qureshi, Gulzar Khan, 2010. Monitoring spatio-temporal variations in aerosols and aerosol–cloud interactions over Pakistan using MODIS data. Advances in Space Research, 46, 1162–1176
  23. Khan Alam, RehanaKhan, Thomas Blaschke, Azam Mukhtiar, 2014. Variability of aerosol optical depth and their impact on cloud properties in Pakistan.Journal of Atmospheric and Solar-Terrestrial Physics, 107, 104–112
  24. King, M.D., Menzel, W.P., Kaufman, Y.J., Tanre, D., Gao, B.C., Platnick, S., Ackerman, S.A., Remer, L.A., Pincus, R., and Hubanks, P.A. 2003. Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS. IEEE, Transactions on Geoscience and Remote Sensing 41 (2), 442e458.
  25. Koren, I., Feingold, G., and Remer, L.A. 2010. The invigoration of deep convective clouds over the Atlantic: aerosol effect, meteorology or retrieval artifact? Atmos. Chem. Phys. 10 (18), 8855–8872.
  26. Koren, I., Kaufman, Y., Rosenfeld, D., Remer, L., and Rudich, Y. 2005. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 32, L14828. Doi: 10.1029/2005GL023187.
  27. Koren, I., Kaufman, Y.J., Remer, L.A., and Martins, J.V. 2004. Measurement of the effect of Amazon smoke on inhibition of cloud formation. Science 303 (5662), 1342–1345.
  28. Koren, I., Martins, J.V., Remer, L.A., and Afargan, H. 2008. Smoke invigoration versus inhibition of clouds over the Amazon. Science 321(5891), 946–949.
  29. Kumar, A. 2013. Variability of aerosol optical depth and cloud parameters over North Eastern regions of India retrieved from MODIS satellite data. AtmosphericandSolar-TerrestrialPhysics100–101(2013)34–49.
  30. Kumar, A. 2014. Long term (2003-2012) spatio-temporal MODIS (Terra/Aqua level 3) derived climatic variations of aerosol optical depth and cloud properties over a semi arid urban tropical region of Northern India. Atmospheric Environment, 83, 291-300.
  31. Kumar, A. 2014. Long term (2003e2012) spatio-temporal MODIS (Terra/Aqua level 3) derived climatic variations of aerosol optical depth and cloud properties over a semi arid urban tropical region of Northern India. Atmospheric Environment, 83, 291-300.
  32. Levy, R.C., Remer, L.A., and Dubovik, O. 2007. Global aerosol optical properties and application to moderate resolution Imagingspectroradiometer aerosol retrieval over land. Journal of Geophysical Research 112, D13210. Doi:10.1029/ 2006JD007815.
  33. Lin, J.C., Matsui, T., Pielke Sr., R.A. and Kummerow, C. 2006. Effects of biomassburning derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study. J. Geophys. Res.-Atmos. 111(D19), D19204.
  34. Matsui, T., Masunaga, H., Pielke, R.A., and Tao, W.K. 2004. Impact of aerosols and atmospheric thermodynamics on cloud properties within the climate system. Geophys. Res. Lett. 31(6), L06109.
  35. Mielonen T., H. Portin, M. Komppula, A., Leskinen, J., Tamminen, I., Ialongo, J., Hakkarainen, K.E.J. Lehtinen, A. 2012. Arola. Biomass burning aerosols observed in Eastern Finland during the Russian wildfires in summer 2010 e Part 2: Remote sensing. Atmospheric Environment, 47, 279-287.
  36. Moa, K., Sporre, Paul Glantz, Peter Tunved, Erik Swietlicki, MarkkuKulmala, HeikkiLihavainen, 2012. A study of the indirect aerosol effect on subarctic marine liquid low-level clouds using MODIS cloud data and ground-based aerosol measurements. Atmospheric Research 116, 56–66.
  37. Myhre, G., Stordal, F., Johnsrud, M., Kaufman, Y.J., Rosenfeld, D., Storelvmo, T., Kristjansson, J.E., Berntsen, T.K., Myhre, A., and Isaksen, I.S.A. 2007. Aerosol–cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos. Chem. Phys. 6, 9351–9388.
  38. Naud, C.M., Baum, B.A., Pavolonis, M., Heidinger, A., Frey, R., and Zhang, H. 2007. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ. 107 (1e2), 200-210.
  39. Philipp, F., Markus, F., Fritzsche, L., and Petzold, A. 2006. Measurement of ultrafine aerosol size distributions by a combination of diffusion screen separators and condensation particle counters. J. Aerosol Sci. 37(5), 577-597.
  40. Ramanathan, V., Crutzen, P.J., Kiehl, J.T., and Rosenfeld, D. 2001. Atmosphere aerosols, climate, and the hydrological cycle. Science 294(5549), 2119–2124.
  41. Ranjan, R.R., Joshi, H.P., and Iyer, K.N. 2007. Spectral variation of total column aerosol optical depth over Rajkot: a tropical semi-arid Indian station. Aerosol Air.Qual Res 7(1), 33–45.
  42. Remer, L.A., Kaufman, Y.J., Tanre, D., Matoo, S., Chu, D.A., Martins, J.V., Li, R.R.,Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and Holben, B.N. 2005. The MODIS aerosol algorithm, products and validation. Journal of Atmospheric Sciences 62, 947e973.
  43. Rosenfeld, D., (1999). TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett. 26(20), 3105–3108.
  44. Rosenfeld, D., and Lensky, I.M. 1998. Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Am. Meteorol. Soc. 79(11), 2457–2476.
  45. Rosenfeld, D., Rudich, Y., and Lahav, R. 2001. Desert dust suppressing precipitation: A possible desertification feedback loop. PNAS, 98, 5975–5980.
  46. Rosenfeld, D., and Woodley, W.L. 2000. Deep convective clouds with sustained supercooled liquid water down to −37.5 degrees C. Nature, 405 (6785), 440–442.
  47. Sekiguchi, M., Nakajima, T., Suzuki, K., Kawamoto, K., Higurashi, A., Rosenfeld, D., Sano, I., and Mukai, S. 2009. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res. 108(D 22), 4699.
  48. Shi, Z., Zhang, D., Hayashi, M., Ogata, H., Ji, H., and Fujiie, W. 2008. Influences of sulfate and nitrate on the hygroscopic behavior of coarse dust particles. Atmos. Environ. 42, 822–827, 2008.
  49. Shupeng Wang, Li Fang, XingfaGu, Tao Yua, Jun Gao. 2011. Comparison of aerosol optical properties from Beijing and Kanpur. Atmospheric Environment 45, 7406-7414
  50. Small, J.D., Jiang, J.H., Su, H., and Zhai, C. 2011. Relationship between aerosol and cloud fraction over Australia. Geophys. Res. Lett. 38, L23802.
  51. Spandana, B., Niranjan, K., and Devi, A. 2012. Advection induced short period anomalies and seasonal features in Aerosol Optical Depth over Bay of Bengal in the W- ICARB Region, Atmospheric Environment, doi: 10.1016/j.atmosenv.2012.01.031
  52. Sundström, A.-M., Kolmonen P., Sogacheva L., and Leeuw de G. 2012. Aerosol retrievals over China with the AATSR dual view algorithm. Remote Sensing of Environment 116, 189–198
  53. Twomey, S. 1977. The influence of pollution on the shortwave albedo of clouds. J AtmosSci; 34, 1149–52.
  54. Wang, F., Guo, J., Wu, Y., Zhang, X., Deng, M., Li, X., Zhang, J., and Zhao, J. 2014. Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmospheric Environment 84, 122e132.
  55. Xin, L., Ern, T.W., Khoo, R., Yong, A.K., Chew, B.N., Salinas, S.V. and Liew, S.C. 2007. Characterization of Aerosol Optical Depth and Angstrom Exponent across Singapore from Sun Photometer Measurements. CRISP, Singapore.
  56. Xiong, X., Chiang, K., Sun, J., Barnes, W.L., Guenther, B. and Salomonson, V.V. 2009. NASA EOS Terra and Aqua MODIS on-orbit performance. Adv. Space Res. 43(3,2), 413e422.
  57. Yassine Charabi, Adel Gastli 2012. Spatio-temporal assessment of dust risk maps for solar energy systems using proxy data. Renewable Energy xxx  1-9
  58. Yin, Y., Levin, Z., Reisin, T.G., and Tzivion, S. 2000. The effects of giant cloud condensation nuclei on the development of precipitation in convective clouds—a numerical study. Atmos. Res. 53(1), 91–116.
  59. Yu, H.B., Liu, S.C., and Dickinson, R.E. 2002. Radiative effects of aerosols on the evolution of the atmospheric boundary layer. J. Geophys. Res.-Atmos. 107(D12), 4142.
  60. Yuan, T., Li, Z., Zhang, R., and Fan, J. 2008. Increase of cloud droplet size with aerosol optical depth: an observation and modeling study. J. Geophys. Res. Atmos. 113(D4), D04201.