تجزیه‌وتحلیل خطر خشک‌سالی با استفاده از شاخص‌های ارزیابی ریسک خشک‌سالی مطالعه موردی: استان خراسان رضوی

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه پژوهشی جغرافیا، مرکز پژوهشی علوم جغرافیایی و مطالعات اجتماعی، دانشگاه حکیم سبزواری، سبزوار، ایران

2 گروه ژئومورفولوژی، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

3 گروه سنجش‌ازدور، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

چکیده

با توجه به تداوم خشک‌سالی و اثرات مخرب آن بر بخش‌های مختلف اقتصادی-اجتماعی استان خراسان رضوی این مطالعه به‌منظور بررسی تغییرات مکانی-زمانی خطر خشک‌سالی در استان و ارزیابی آسیب‌پذیری در برابر آن هدف‌گذاری شده است. بدین منظور از مجموعه داده‌های هواشناسی طی دوره 70 ساله (2020-1950) و شاخص‌های خشک‌سالی همچون شاخص بارش استاندارد (SPI)، شاخص بارندگی (RAI) و شاخص z (ZSI) به‌منظور ارزیابی وضعیت خشک‌سالی منطقه در چهار مقیاس زمانی 3، 6، 12 و 24 ماهه استفاده گردید. سپس خطر خشک‌سالی و آسیب‌پذیری با استفاده از چهار شاخص مخاطره خشک‌سالی (DHI)، شاخص مواجهه با خشک‌سالی (DEI ­­، شاخص آسیب‌پذیری خشک‌سالی (DVI) و شاخص خطر خشک‌سالی ترکیبی (DRI) مورد ارزیابی قرار گرفت. بر اساس نتایج شاخص DHI خشک‌سالی‌های شدید و خیلی شدید منطبق بر قسمت‌های شرق، مرکز و جنوب می‌باشد که می‌تواند به دلیل افزایش مصرف آب ناشی از توسعه جمعیت، توسعه کشاورزی و صنایع و همچنین تغییرات آب و هوایی باشد. بر اساس نتایج شاخص‌های DVI و DRI مناطق منطبق بر خشک‌سالی‌های شدید و خیلی شدید در قسمت‌های جنوبی، غربی و مرکزی است. شاخص DEI نشان داد که در قسمت‌های مرکزی، شرقی و جنوبی استان بخش کشاورزی به دلیل وابستگی بیش‌ازحد به ذخیره رطوبتی خاک، نخستین بخشی است که تحت تأثیر اثرات مخرب خشک‌سالی قرار می‌گیرد. نقشه‌های خطر خشک‌سالی نشان‌دهنده احتمال مواجهه منطقه با شرایط بسیار خشک بوده و منابع آب منطقه را در کوتاه‌مدت و میان‌مدت تحت تأثیر قرار می‌دهد

کلیدواژه‌ها


عنوان مقاله [English]

Drought Risk Analysis using Drought Risk Assessment Indices The Case Study of Khorasan Razavi Province

نویسندگان [English]

  • mahdi zarei 1
  • Mahnaz Naemi Tabar 2
  • Rahman Zandi 3
1 Research Center of Social Studies and Geographical Sciences, Hakim Sabzevari University, Sabzevar, Iran
2 Department of Geomorphology, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
3 Department of RS & GIS, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

Considering the persistence of drought and its destructive effects on various socio-economic sectors of Khorasan-Razavi province, this study is aimed at investigating the spatial-temporal changes of drought risk in the province and assessing the vulnerability to it. For this purpose, from the set of meteorological data during the 70-year period (1950-2020) and drought indices such as Standard Precipitation Index (SPI), Rainfall Index (RAI) and Z-Index (ZSI) in order to evaluate the drought situation of the region in four-time scales. 3, 6, 12 and 24 months were used. Then, drought risk and vulnerability were evaluated using four drought risk indices (DHI), drought exposure index (DEI), drought vulnerability index (DVI) and combined drought risk index (DRI). According to the results of the DHI index, severe and very severe droughts correspond to the eastern, central and southern parts, which can be due to the increase in water consumption due to population development, agricultural and industrial development, as well as climate change. According to the results of DVI and DRI indicators, the regions correspond to severe and very severe droughts in the southern, western and central parts. The DEI index showed that in the central, eastern and southern parts of the province, the agricultural sector is the first sector to be affected by the destructive effects of drought due to excessive dependence on soil moisture reserves. Drought risk maps indicate the possibility of the region facing very dry conditions and affecting the water resources of the region in the short and medium term.
Extended Abstract
Introduction
Drought is a natural disaster that occurs slowly and can continue for a long time and involve large parts of the land. This phenomenon can occur in all climatic regions, and only its characteristics are different from one region to another. Compared to other natural disasters, this natural disaster is very important in terms of intensity and frequency, spatial extent, and the amount of damage it causes. The purpose of the present research is 1- to determine and analyze the intensity and duration of dry and wet periods using standard precipitation indices (SPI), rainfall index (RAI), and index (ZSI), 2- analysis of the risk of drought and damage, adaptability using four indexes such as (DHI), (DEI), (DVI), and (DRI).
 
Methodology
In the present study, after reviewing the statistics and information of 226 rain gauge and synoptic stations received from the National Meteorological Organization, the rainfall statistics of 176 stations were used during the common statistical period of 70 years (1950-2020). After determining the common statistical period, the meteorological data were analyzed using SPSS software, and the statistical defects were reconstructed using the difference and ratios method. Then, SPI, RAI, and ZSI indices were exerted to determine the drought status of the province using DIP software, and a map of areas affected by drought was prepared using interpolation in ArcGIS software. To quantify and prepare the drought risk index, weight is given to each class of drought in such a way that the class of normal drought is given a weight of one, and a very severe drought, which creates the most significant risk when it occurs, is given a weight of four. Then, the severity map of the drought classes is classified into four classes based on the percentage probability of drought using the natural breakdown method.
 
Results and discussion
The comparison of SPI index values in 3, 6, 12, and 24 months shows that a significant change in rainfall occurred in 56% of the study period. The values of the RAI index in 3 and 6 months show that in all stations, the number of normal periods is more than wet and dry periods, and the number of dry events is more than wet events. The values of the ZSI index in 3 and 6-month periods show that the severity and frequency of drought in the northern and eastern regions is more than in the western regions of the province. According to the DHI drought risk map, the probability of a severe 3-month drought is less in the southwestern regions (Khalilabad, Ferdous, and Gonabad basins), as well as parts of the center (Torbet Heydarieh and Kashmar basins) and the east of the province (Torbat Jam and Taybad basins) are exposed to severe drought. DEI's drought risk assessment shows that a 12-month severe drought generally includes the eastern regions (Torbat Jam and Taibad basins) and the southeast (Khaf and Rashtkhar basins) and has the highest probability of drought and the northwestern regions (basin Quchan and Chenaran), northeast (Kalat and Sarkhs basins) to parts of the center (Mashhad and Freeman basins) have the lowest probability of 12-month severe drought. Also, the scattered parts from the northwest to the southeast have the highest probability and the parts from the west and east to the northeast have the lowest probability of an average drought of 12 months. The spatial distribution of the index (DVI) in a 3-month time step shows that parts of the province from the north to the northeast have the highest and the west and southwest parts have the lowest 3-month drought risk index. The spatial distribution of the drought risk index in a 12-month time step shows that there is the highest risk from west to east, and the northeastern parts of the region have the lowest risk of a 12-month drought. The index (DRI) evaluation indicates that the highest percentage of severe drought occurs in the southern and eastern parts of the province, and the lowest percentage of severe drought occurs in the western part. In general, the areas prone to severe drought are mainly concentrated in the central part of the province, and the western and northeastern areas are prone to
 
severe drought.
 
Conclusion
The results of using drought indices show that these three indices do not differ much from each other in determining drought periods. However, the ZSI index has a significant difference in trend with them, which is probably due to considering the median of the data instead of their average, which the results of Karimi et al.'s study (2010) regarding the low correlation of this index with other drought indices are consistent. Risk assessment with the DHI drought risk index showed that very severe drought (38%) is reserved for the east, center, and south of the province, and the rest of the basins of the province have experienced less than 21% of severe drought periods. The DEI drought risk index shows that the drought in the south, northeast, southeast, and southwest parts is more than 18%, and the northern regions of the province have experienced more than 60% of the entire average drought period. According to the DVI index, very severe droughts are observed in the center and south of the province. Then there is the
 
east, southeast, center, and northeast, where the maximum number of severe droughts in the entire period is 36 percent. Therefore, according to the spatial zoning of the intervals, it can be concluded that the east, northeast, south, southeast, and center of the province had the most severe and moderate droughts.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved thecontent of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper

کلیدواژه‌ها [English]

  • Drought
  • Vulnerability
  • Drought Risk Index
  • Razavi Khorasan Province
اختیاری خواجه، شیوا، نگهبان خواجه، فهیمه و دین‌پژوه، یعقوب. (1398). مقایسه عملکرد پایش خشک‌سالی با شاخص‌های تک معرفه و چند معرفه (مطالعه موردی: ایستگاه‌های هواشناسی مختلف ایران). نشریه علوم آب‌وخاک (علوم و فنون کشاورزی و منابع طبیعی)، 23 (2)، 446-433. http://dorl.net/dor/20.1001.1.24763594.1398.23.2.17.5
اصغری کلشانی، فاطمه و ستاریان اصیل، کتایون. (1400). بررسی تطبیقی شاخص SSI و RAI در غرب حوزه آبخیز ارومیه در سال 1398 با استفاده از GIS. نشریه علمی دانشجویی حفاظت آب. خاک و هوا (انجمن علمی دانشجویی اکوهیدرولوژی دانشگاه تهران)، 2(1)، 38-46.
انصاری، حسین و داوری، کامران. (1386). پهنه‌بندی دوره‌های خشک‌سالی با استفاده از شاخص بارندگی استاندارد در محیط جی ای اس، (استان خراسان). نشریه پژوهش‌های جغرافیایی موسسه جغرافیایی دانشگاه تهران، 39(60)، 108-97.
بالویی، فاطمه. (1400). پهنه‌بندی و پایش مکانی و زمانی خشک‌سالی هواشناسی استان ایلام با استفاده از شاخص ZSI و CZI. سومین کنفرانس ملی مهندسی و مدیریت محیط‌زیست.
بذرافشان، ام‌البنین؛ محموزاده، فوزیه و بذرافشان، جواد (1395). ارزیابی روند تغییرات خشک‌سالی بر اساس شاخص بارش استانداردشده و شاخص تبخیر - تعرق استانداردشده در سواحل جنوبی ایران. مدیریت بیابان، 4(8)، 69-54. https://doi.org/10.22034/jdmal.2017.24662
بروغنی، مهدی؛ مرادی، حمیدرضا و زنگنه اسدی، محمدعلی. (1394). پهنه‌بندی و تعیین بهترین شاخص خشک‌سالی در استان خراسان رضوی. مطالعات جغرافیایی مناطق خشک، 5 (19)، 70-84.
پودینه، محمدرضا؛ حیدری نیا، محمد؛ موسوی، سید روح‌الله و دوستی مقدم، حسین. (1399). پایش شاخص‌های خشک‌سالی در شهر زاهدان در بازه‌های زمانی مختلف. فصلنامه جغرافیای طبیعی، 13(47)، 143-133. https://dorl.net/dor/20.1001.1.20085656.1399.13.47.8.0
پورطاهری، مهدی، رکن‌الدین افتخاری، عبدالرضا و کاظمی، نسرین. (1392). نقش رویکرد مدیریت ریسک خشک‌سالی در کاهش آسیب‌پذیری اقتصادی- اجتماعی کشاورزان روستایی (از دیدگاه مسئولان و کارشناسان) مطالعه موردی: دهستان سولدوز، آذربایجان غربی. فصلنامه پژوهش‌های روستایی، 4(1)، 22-1. https://doi.org/10.22059/jrur.2013.31969
جهان تیغ، حسین؛ امیر اسماعیلی، وحید رضا و داوری، ابوالفضل. (1398). ارزیابی و مدیریت خشک‌سالی. فصلنامه جغرافیا و برنامه‌ریزی منطقه‌ای، 9(37)، 327-313. https://dorl.net/dor/20.1001.1.22286462.1398.10.37.17.6
حمزه‌نژاد، سولماز؛ همدمی، نرگس؛ نظرنژاد، حبیب و خرمی، کیوان. (1397). پهنه‌بندی خشک‌سالی حوزه آبخیز قره‌سو با استفاده از شاخص SPI و IDW. سیزدهمین همایش ملی علوم و مهندسی آبخیزداری و سومین هوایش ملی صیانت از منابع طبیعی و محیط‌زیست. 10 و 11 مهر 1397، دانشگاه محقق اردبیلی.
حیدری علمدارلو، اسماعیل؛ نسب پور، سحر و کشتکار، حمیدرضا. (1396). داده‌کاوی احتمال وقوع خشک‌سالی در ایران. نشریه مدیریت بیابـان، 5(9)، 1-14. https://doi.org/10.22034/jdmal.2017.27856
حیدریزادی، زاهده؛ اونق، مجید و بایرام کمکی، چوقی. (1401). ارزیابی خسارت خشک‌سالی با استفاده از شاخص‌های ماهواره‌ای خشک‌سالی و فاکتورهای آسیب‌پذیری (مطالعه موردی: استان ایلام). نشریه علمی تحقیقات مرتع و بیابان ایران، 29(4)، 542-561.  Doi:10.22092/ijrdr.2022.128077
خانی، مهدی. (1384). نگاهی کلی به مدیریت ریسک و لزوم آن در مدیریت خشک‌سالی. مجله عمران شریف، 34، 58-60.
زارع ابیانه، حمید؛ محبوبی، علی‌اصغر و نیشابوری، محمدرضا. (1383). بررسی وضعیت خشک‌سالی و روند آن در منطقه همدان بر اساس شاخص‌های آماری خشک‌سالی. مجله پژوهش و سازندگی در زراعت و باغبانی، 64، 3-7.
عیوضی، معصومه و مساعدی، ابوالفضل. (1390). پایش و تحلیل مکانی خشک‌سالی هواشناسی در سطح استان گلستان با استفاده از روش‌های زمین‌آماری. نشریه مرتع و آبخیزداری، مجله منابع طبیعی ایران، 64(1)، 78-65.
قاسمی نژاد، سعیده؛ سلطانی، سعید و سفیانیان، علیرضا. (1392). ارزیابی ریسک خشک‌سالی استان اصفهان. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب‌وخاک، 18(68)، 213-225. http://dorl.net/dor/20.1001.1.24763594.1393.18.68.19.4
کریمی، ولی‌الله، حبیب نژاد روشن، محمود و آبکار، علیجان. (1390). بررسی شاخص‌های خشک‌سالی هواشناسی در ایستگاه‌های سینوپتیک مازندران. فصلنامه مهندسی آبیاری و آب، 2(5)، 25-15.
منتصری، مجید؛ امیر عطایی، بابک و خلیلی، کیوان. (1395). تحلیل روند تغییرات زمانی و مکانی دوره‌های خشک‌سالی و ترسالی شمال غرب کشور بر اساس دو شاخص خشک‌سالی SPI و RAI. نشریه آب‌وخاک (علوم و صنایع کشاورزی)­، 2، 655-671. https://doi.org/10.22067/jsw.v30i2.39679
وخشوری، علی؛ جعفرپور، زین‌العابدین و کردوانی، پرویز. (1396). تعیین مناسب‌ترین شاخص برای خشک‌سالی‌های مناطق بارشیِ ایران. فصلنامه برنامه‌ریزی منطقه‌ای، 7 (28)، 201-201. https://dorl.net/dor/20.1001.1.22516735.1396.7.28.16.5
یزدانی، وحید؛ داوری، کامران؛ قهرمان، بیژن و زارع ابیانه، حمید. (1392). اعتبارسنجی چهار نمایه خشک‌سالی هواشناسی بر اساس حلقه‌های رشد درختان غیرمثمر (مطالعه موردی مشهد). مهندسی منابع آب، 23، 12-1. https://dorl.net/dor/20.1001.1.20086377.1392.6.18.2.2
میر یعقوب زاده، میرحسین؛ خسروی، سید امین و ذبیحی، مصطفی. (1398). مروری بر شاخص‌های خشک‌سالی و بررسی عملکرد آن‌ها. نشریه آب و توسعه پایدار، 6(1)، 103-112.  Doi:10.22067/jwsd.v6i1.74428
 
References
Adger, W. N. (2006). Vulnerability, Global Environ. Change, 16, 268–281.
Ansari, H., & Davari, K. (2007). Zoning of drought periods using standard rainfall index in GAS environment, (Khorasan province). Journal of Geographical Researches of Geographical Institute of Tehran University, 108, 60-97. [In Persian].
Asghari kaleshani, F., & Sataryan Asil, K. (2021). Comparative study of SSI and RAI index in the west of Urmia watershed in 2019 by using of GIS. Student Scientific Journal of Water, Soil and Air Protection. 2, 38-46. [In Persian].
Baloei, F. (2021). The third national conference on environmental engineering and management. Article code EEMCONF03_015, 8-1. [In Persian].
Bazrafshan, J., Mahmudzadeh, F., Bazrafshan, O. (2017). Evaluation of temporal trends of the SPI and SPEI drought indices in the Southern Coast of Iran. Desert Management, 8, 54-69. https://doi.org/10.22034/jdmal.2017.24662 [In Persian].
Bella, S. Z., & Nemath, A. (2006). Application of gis tools: drougth vulnerability in Somogy county, Hungary. In: 2nd Gottingen gis and remote sensing Gottingen, Portugal.
Boroghani, M., Moradi, H. R., Zanghaneh Asadi, M. A. (2015). Zoning and determination of the best drought index in Razavi Khorasan province. Geographical studies of dry areas, 5, 70-84. [In Persian].
Brooks, N., Neil Adger, W., Mick Kelly, P. (2005). The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation. Global Environ. Change, 15, 151– 163. https://doi.org/10.1016/j.gloenvcha.2004.12.006
Chu, P. S., Nash, A. J., Porter, F.Y. (1993). Diagnostic studies of two contrasting rainfall episodes in Hawaii: Dry 1981 and wet 1982. Journal of Climate, 6 (7), 1457-1462. https://doi.org/10.1175/1520-0442(1993)006<1457:DSOTCR>2.0.CO;2
Dabanli, I. (2018). Drought Risk Assessment by Using Drought Hazard and Vulnerability Indexes. Nat. Hazards Earth Syst. Sci. Discuss. https://doi.org/10.5194/nhess-2018-129.
Eivazi, M., & Mosaedi, A. (2011). Monitoring and spatial analysis of meteorological drought in Golestan Province using geostatistical methods. Journal of Range and Watershed Management, 64 (1), 65-78. [In Persian].
Ekhtiary Khajeh, S., Negahban, F., Dinpashoh, Y. (2019). Comparing univariate and multivariate indices in drought monitoring. Journal of Hydrology and Soil Science, 23 (2), 433-446. http://dorl.net/dor/20.1001.1.24763594.1398.23.2.17.5 [In Persian].
Fleig, A. K., Tallaksen, L. M. and Hisdal, H. (2006). “Drought Indices Suitable to Study the Linkages to Large-Scale Climate Drivers in Regions with Seasonal Frost Influence.” IAHS PUBLICATION, 308, 169.
Füssel, H. M. (2007). Vulnerability: a generally applicable conceptual framework for climate change research. Global Environ. Change, 17, 155–167.
Ghaseminejad, S., Soltani, S., Sofianian, A. R (2012). Assessing drought risk in Isfahan province, Journal of Agricultural Sciences and Techniques and Natural Resources. Water and Soil Sciences, 213-225. http://dorl.net/dor/20.1001.1.24763594.1393.18.68.19.4 [In Persian].
Hamze Nejad, S., Hamdami, N., Nazarnejad, H., Khorami, K. (2017). Drought zoning of Qara-Su watershed using SPI and IDW index. The 13th National Watershed Science and Engineering Conference and the 3rd National Conference on Protection of Natural Resources and Environment. Mohaghegh Ardabili University. [In Persian].
Haro, D., Abel, S., Javier, P., Joaquín, A. (2014). Methodology for drought risk assessment in within- year regulated reservoir systems: Application to the Orbigo, River System (Spain). Water Resources Management, 28 (11), 3801-3814. http://dx.doi.org/10.1007/s11269-014-0710-3
Hayes, M. J. (2010). What is drought? National Drought Mitigation Center (NDMC), http://www.drought.unl.edu/.
Heim J. R.R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83 (8), 1149-1166.
Heydari Alamdarlou, I., Nesabpour, S., Keshtkar, H.R. (2016). Data mining of probability of drought in Iran. Desert Management Journal, 1-14. https://doi.org/10.22034/jdmal.2017.27856 [In Persian].
Heydarizadi, Z., Onogh, M., Bayram Kokami, Ch. (2022). Assessing drought damage using drought satellite indicators and vulnerability factors (case study: Ilam province). Scientific Journal of Pasture and Desert Research in Iran, 29, 542-561. Doi:10.22092/ijrdr.2022.128077 [In Persian].
Hou, W., Yan, P., Feng, G., Zuo, D. (2021). A 3D Copula Method for the Impact and Risk Assessment of Drought Disaster and an Example Application. Frontiers in Physics, 9, 156.
Ishak, Y. M., Musa, E. (2021). Drought monitoring in Ceyhan Basin, Turkey. Journal of Applied Water Engineering and Research, https://doi.org/10.1080/23249676.2021.1932616
Jahan Tigh, H., Amir Ismaili, V. R., Davari, A. (2018). Drought assessment and management. Regional Geography and Planning Quarterly, 313-327. https://dorl.net/dor/20.1001.1.22286462.1398.10.37.17.6 [In Persian].
Jiang, S., Yang, R., Cui, N., Zhao, L. (2018). Analysis of drought vulnerability
characteristics and risk assessment based on information distribution and diffusion in
Southwest China. Atmosphere, 9 (7), 2-39. https://doi.org/10.3390/atmos9070239
Karimi, V. A., Habibnejad Roshan, M., Abkar, A. J. (2010). Investigation of meteorological drought indices in Mazandaran synoptic stations. Irrigation and water engineering, 2 (5), 15-25.
Khani, M. (1995). An overview of risk management and its necessity in drought management. Omran Sharif Journal, 34, 58-60. [In Persian].
Kim, H., Park, J., Yoo, J. and Kim, T.W. (2015). Assessment of drought hazard, vulnerability, and risk: a case study for administrative districts in South Korea. Journal of Hydro-environment Research, 9 (1),28–35. https://doi.org/10.1016/j.jher.2013.07.003
Le, T., Sun, C. H., Choy, S., Kuleshov, Y. (2021). Regional drought risk assessment in the Central Highlands and the South of Vietnam, Geomatics. Natural Hazards and Risk, 12 (1), 3140-3159. https://doi.org/10.1080/19475705.2021.1998232
Mckee, T. B., Doesken, N. J., Kleist, J. (1993). The relationship of drought frequency and duration to time scales. preprints Eighth Conference on Applied Climatology, 179-184.
McKee, T. B., Doesken, N. J., Kleist, J. (1997). The Relationship of drought frequency and duration to time scales. Preprints، th conference on applied climatology, 17-22 January. Anaheim، CA. 379-384.
Mozafari, Gh. A. (2006). Incompatibility of meteorological drought and hydrological drought in two adjacent watersheds in the northern slope of Shirkuh Yazd. Space planning and preparation. [In Persian].
Muntsari, M., Amir Atai, B., Khalili, K. (2015). Analysis of temporal and spatial changes in the periods of drought and drought in the northwest of the country based on two drought indices, SPI and RAI. Water and Soil Journal (Agricultural Sciences and Industries), 2, 655-671. https://doi.org/10.22067/jsw.v30i2.39679 [In Persian].
Naumann, G., Barbosa, P., Garrote, L., Iglesias, A., Vogt, J. (2014). Exploring drought vulnerability in Africa: an indicator based analysis to be used in early warning systems. Hydrol. Earth Syst. Sci, 18, 1591–1604, www.hydrol-earth-syst-sci. https://doi.org/10.5194/hess-18-1591-2014
Poortaheri, M., Eftekhari, A. and Kazemi, N. (2013). The role of drought risk management approach in reducing social—economic vulnerability of farmers and rural regions case study: Sulduz Rural District, Azerbaijan Gharbi. Journal of Rural Research, 4 (1), 1–12. https://doi.org/10.22059/jrur.2013.31969 [In Persian].
Pudine, M. R., Heydarinia, M., Mousavi, S. R., Dosti Moghadam, H. (2019). Monitoring drought indicators in Zahedan city in different time frames. Natural Geography Quarterly, 12, 133-143. https://dorl.net/dor/20.1001.1.20085656.1399.13.47.8.0 [In Persian].
Savari, M., Eskandari damaneh, H. (2019)0 “The Role of Participatory Management in Empowering Local Communities in Coping with Droughts in Southern Kerman Province”. The Journal of Spatial Planning, 23 (2), 123-171. https://dorl.net/dor/20.1001.1.16059689.1398.23.2.5.8 [In Persian].
Smit, B., Burton, I., Klein, R. J., Street, R. (1999). The science of adaptation: a framework for assessment. Mitig. Adapt. Strat. Global Change, 4, 199–213. http://dx.doi.org/10.1023/A:1009652531101
Sun, C., Choy, S., Chua, Z., Aitkenhead, I., Kuleshov, Y. (2020). Geographic information system for drought risk mapping in Australia, Drought risk analyser web app. Int Arch Photogramm Remote Sens Spatial Inf,Sci, XLIV-3/W1, 139-1. https://doi.org/10.5194/isprs-archives-XLIV-3-W1-2020-139-2020
Tingsanchali, T., & Piriyawong, T. (2018). Drought Risk Assessment of Irrigation Project Areas in a River Basin. Engineering Journal, 22 (1), 280-286. https://doi.org/10.4186/ej.2018.22.1.279
Vakhshuri, A., Jafarpour, Z. A., Kardavani, P. (2016). Determining the most appropriate index for droughts in the rainy regions of Iran. Regional Planning Quarterly, 7 (28), 201-201. https://dorl.net/dor/20.1001.1.22516735.1396.7.28.16.5 [In Persian].
Wu, C., Yeh, P. J. F., Chen, Y. Y., Lv, W., Hu, B. X., Huang, G. (2021). Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multimodel ensemble projections. Journal of Hydrology, 598, 126265. https://doi.org/10.1016/j.jhydrol.2021.126265
Wu, J., He, B., Liu, M., zhao, L. (2011). Quantitative assessment and spatial characteristic analysis o f agriculture drougth vulnerability in china. Natur. Hazards, 56 (3),785-801. https://doi.org/10.1007/s11069-010-9591-9
Mriyaqubzadeh, M. H., Khosravi, S. A., Zabihi, M. (2018). An overview of drought indicators and their performance. Journal of water and sustainable development, 1, 103-112. Doi: 10.22067/jwsd. v6i1.74428 [In Persian].
Yazdani, V., Davari, K., Ghahraman, B., Zare Abianeh, H. (2012). Validation of four meteorological drought profiles based on growth rings of unfruitful trees (Mashhad case study). Water Resources Engineering, 23. https://dorl.net/dor/20.1001.1.20086377.1392.6.18.2.2 [In Persian].
Zare Abianeh, H., Mahboubi, A. A., Nishaburi, M. R. (2004). Investigating the drought situation and its trend in Hamedan region based on drought statistical indicators. Journal of Research and Development in Agriculture and Horticulture, 64, 3-7. [In Persian].
Zhang, F., Wang, D., Qiu, B (1997). China’s agricultural phrenology atlas. Science Press, Beijing.
Zhao, P., Lü, H., Fu, G., Zhu, Y., Su, J., & Wang, J. (2017). Uncertainty of hydrological drought characteristics with copula functions and probability distributions: a case study of Weihe River, China. Water, 9 (5), 334.  https://doi.org/10.3390/w9050334