مدل سازی فضایی تصمیم گیری های چندمعیاره محلی: مطالعه موردی ارزیابی پایگاه ها اورژانس جاده ای استان فارس

نوع مقاله : مقاله علمی پژوهشی

نویسنده

گروه جغرافیای انسانی، دانشکده جغرافیا، دانشگاه تهران، تهران،ایران

چکیده

برای انتخاب مکان مناسب فعالیت‌ها، روش‌های مختلفی توسط متخصصین علوم مکانی ارائه‌شده است که به بررسی معیارها، روش‌ها و الگوهای انتخاب مکان می‌پردازند. روش‌هایی که اغلب استفاده می‌شود روش‌های عمومی می‌باشد که تفاوت‌ها و اختلافات جغرافیایی و توزیع داده‌ها توجهی نمی‌شود، بر اساس اصل حساسیت دامنه تغییرات، تغییرات محلی داده‌ها در محاسبات وزن شاخص‌ها لحاظ می‌شود. سؤال محوری این است که چگونه تغییرات محلی را مدل و در مدل‌سازی فضایی لحاظ نمود. بر این اساس ارزیابی پایگاه‌های اورژانس استان فارس به‌عنوان مطالعه موردی انتخاب‌شده است و برای ارزیابی از معیارهای فاصله از نیروگاه، فاصله از مراکز لجستیک، صنایع، پایانه‌های حمل‌ونقل، بیمارستان، هتل و گردشگری، شهر، نقاط روستایی و مراکز بازارچه‌ای استفاده‌شده است، با استفاده از روش AHP به معیارها وزن دهی شده است و سپس برای وزن‌های محلی، از فیلترهای همسایگی بدون همپوشانی در شعاع 25 کیلومتر استفاده‌شده و مقادیر مربوط به دامنه تغییرات، مقدار بیشینه، مقدار کمینه را محاسبه نموده و بر اساس رابطه ارائه‌شده در این مقاله وزن‌های محلی به دست آمد آنگاه لایه‌ها بی مقیاس شده و مقادیر وزن محلی در لایه‌های بی مقیاس شده ضرب شد و نمرات نهایی حاصل شد، در گام بعدی برای مقایسه داده‌ها با استفاده از روش عمومی نیز تلفیق و محاسبه شد نتایج دو روش به نقاط پایگاه‌های اورژانس منتقل شد و نتایج آن تحلیل شدند

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Modeling of Local-MCDM the case study of evaluation of EMS stations in Fars province

نویسنده [English]

  • Hassan Faraji
Department of Human Geography, Faculty of Geography, University of Tehran, Tehran, Iran
چکیده [English]

A B S T R A C T
For choosing suitable place multiple methods are introduced, which examine the qualities, methods and patterns of location selection. The current methods use global approach and do not pay attention to spatial differences, environmental variation in variables, local changes modeled by local weighting indicators. It has been selected as a case study to evaluate the EMS center of Fars province and to evaluate the indicators of distance from the power plant, distance from logistics centers, industries, transportation terminals, hospitals, hotels and tourism, cities, rural areas and custom centers. has been used, using the AHP method to weight the qualities, and then for local weights, non-overlapping neighborhood filtering within a radius of 25 km are used and calculate the corresponding changes, quantity, ratio Presented in this article, the obtained weights, then the compute local weighted layers, and then local weight was multiplied in the normalized layers and the final layer were obtained. In the next step, it was combined and calculated to compare the data using the global method. The results of the two methods were transferred to the points of the EMS and the results were analyzed
Extended Abstract
Introduction
In geographical studies and spatial planning, there are different approaches to choosing the right place for all kinds of applications and uses, and a process is followed to choose the best places. This process includes stating the research problem (cognition), choosing the criteria and preferences of decision makers and how to determine the weight of indicators, combining criteria (design) and finally, choosing the best option. In the current methods of spatial decision, the criteria are given a fixed weight, while in geographical locations, the distribution of geographical phenomena is not uniform. In this case, attention should be paid to the spatial distribution pattern of geographical phenomena based on the principle of sensitivity of the range of changes, the size of the range of changes affects the outputs, and the data with a smaller range of changes also have a lesser effect on the output. The data with a larger range of changes will have a more significant effect on the output. Therefore, in spatial analysis, indicators that have small changes are less important. Local models have been presented to model local changes in spatial multi-criteria decision-making; in this research, the main issue is how to model the local changes that affect the expected outputs.
 
Methodology
The research process is based on multi-criteria spatial decision-making methods (national and local). First, spatial patterns of indicators were analyzed through exploratory analyzes of ESDA spatial data. Then based on the review of the research criteria, the direct weighting method was used to calculate the weight of the indicators, and the experts were asked to specify the weight of the criteria in the range of 1 to 10. The opinions were combined, and the final weight was obtained. First, the data were spatially modelled to model and calculate the local weights. Then Block Statistics spatial filter without overlap was used to determine the neighborhood. The range of local changes,
 
maximum and minimum values, were calculated, and local weights were obtained based on that. Finally, the information layers were descaled. After that, the unscaled criterion layers were multiplied by the national weights and the final national scores were obtained. In the next step, the data of the evaluated information layers (local and national) were transferred to the points of emergency databases. Based on the analysis, the fit was done.
 
Results and discussion
General or global weights pay attention to the relative importance of indicators, which is the starting point for calculating local weights. Based on the research results, the most critical indicators are industries, cities and hospitals, which are more important in the location of road emergency stations. However, in order to achieve better results, it is necessary to build a local weight layer. The results of the research show that the indicators' weight and the difference in the criteria (general weight) are not equal in the entire geographical area, and the areas with a larger range of changes have a higher coefficient.
Because, unlike general weights that are obtained based on different methods, local weights are estimated based on the principle of sensitivity of the range of changes and are changed spatially, and a fixed value is not considered for all areas. According to the research findings, the highest level in the general and local evaluation method corresponds to 0.5 to 0.7. Based on the local (geographic) weight method, it is less than the national or general method in the range of 0.9 to 1. Furthermore, this is due to the more precise nature of this method, which models the effects of local changes. To evaluate the compliance of the emergency centers with the final maps of suitability assessment, the information on the suitability maps was transferred to the map of the emergency center points of Fars province. Based on the evaluation of 207 emergency stations, according to the general method, 14 percent are in the high group (0.9-1), and according to the local or geographical method (16.9), percent are in this group.
 
Conclusion
At the level of space and geographical regions, phenomena and geographical complications are not uniformly distributed, some phenomena have a homogeneous distribution, and some have a heterogeneous distribution. On the one hand, the phenomena and decision issues are affected by the context in which they are formed and evolve; on the other hand, these phenomena are placed in the network of mutual relations. Furthermore, the results of the set of phenomena may differ from the results of the phenomena individually and separately; in this article, an attempt has been made to address the issue that in spatial analysis and planning, it is necessary to pay attention to geographical differences in decision-making. Furthermore, it should not be evaluated in general terms of spatial decision problems; one of the methods of modelling these differences and spatial changes is to consider the local weight of the criteria. Based on the research findings, local (geographical) and national analysis results are different and can better show these changes. On the other hand, the pattern of spatial differences also has its spatial pattern, and paying attention to these differences in spatial differences can be the subject of further studies.
 
Funding
There is no funding support.
 
Authors’ Contribution
Authors contributed equally to the conceptualization and writing of the article. All of the authors approved the content of the manuscript and agreed on all aspects of the work declaration of competing interest none.
 
Conflict of Interest
Authors declared no conflict of interest.
 
Acknowledgments
 We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Emergency medical services (EMS)
  • Local Weighted Linear Combination
  • Global Weighted Linear Combination
  1. خاک پور، براتعلی؛ خدابخشی، زهرا و ابراهیمی قوزلو، میرمعظم. (1391). مکان‌یابی مراکز درمانی با استفاده از GIS و روش ارزیابی چند معیاری AHP: ناحیه دو شهر نیشابور. جغرافیا و توسعه ناحیه‌ای، 10(19)، 1-20.
  2. فرجی سبکبار، حسنعلی و رضاعلی، منصور. (1388). مقایسه مدل‌های گسسته و پیوسته مکانی (مطالعه موردی: مکان‌یابی محل واحدهای تولید روستایی بخش طرقبه). پژوهش‌های جغرافیای انسانی (پژوهش‌های جغرافیایی)، 41(67)، 69-83.
  3. گلدویی، سمیه؛ محمدزاده، مرجان؛ میرکریمی، سید حامد و سلمان ماهینی، عبدالرسول. (1401). مکان‌یابی مناطق مستعد توسعه پارک‌ها و فضای سبز شهری. مجله آمایش جغرافیایی فضا، 12 (2)، 117-132. Doi: 10.30488/GPS.2022.309469.3459
  4. مومن­زاده، زهره؛ کلانتری، سعیده؛ تازه، مهدی و تقی­زاده مهرجردی، روح الله. (1399). پهنه‌بندی و مکان‌یابی نیروگاه‌های خورشیدی با استفاده از AHP و GIS در استان یزد. علوم و تکنولوژی محیط‌زیست، 22(12)، 259-271.doi: 10.22034/jest.2020.37606.4373.271
  5. میعادفر، جعفر، کشوری، فاطمه، آبش زاده، کارولین، کامران، حسن، نوری ساری، حسن، و بهمن‌آبادی، مهدی. (1401). سامانه هوشمند پیش‌بینی و جایابی مستمر پایگاه‌های اورژانس بر مبنای اصول آمایش سرزمین. جغرافیا، 20(75)، 191-201.
  6.  Addicott, Ethan T., & Eli P. Fenichel. (2019). Spatial aggregation and the value of natural capital. Journal of Environmental Economics and Management, 95, 118-132 doi:10.1016/j.jeem.2019.03.00
  7. Alemdar, K. D., Ömer, K., & Muhammed, Y. Ç. (2020). A GIS and microsimulation-based MCDA approach for evaluation of pedestrian crossings. Accident Analysis & Prevention 148, 105771. DOI: 10.1016/j.aap.2020.105771.
  8. Allen, W. (2011). GIS tutorial, for ArcGIS, Spatial Analysis Workbook 2.
  9. Amir, A. Y., Putri, Ai., & Rakhma, D. (2022). Penerapan Metode AHP dan SAW Dalam Pemilihan Beasiswa Anak Yatim Piatu Di Madrasah Ibtidaiyah. Paradigma-Jurnal Komputer dan Informatika, 24 (1), 47-58. DOI:10.36706/jsi.v12i1.9585
  10. Anselin, L. (2019). The Moran scatterplot as an ESDA tool to assess local instability in spatial association. Spatial analytical perspectives on GIS. Routledge, 111-126.
  11. Bezdek, J. C., Chuah, S. K., & Leep, D. (1986). Generalized k-nearest neighbor rules. Fuzzy Sets and Systems, 18(3), 237-256. DOI: 10.1016/0165-0114(86)90004-7
  12. Boroushaki, S., & Malczewski, J. (2010). Using the fuzzy majority approach for GIS-based multicriteria group decision-making. Computers & Geosciences, 36(3), 302-312. DOI: 10.1016/j.cageo.2009.05.011
  13. Boster, Kimberly AS, et al. (2022) Sensitivity analysis on a network model of glymphatic flow.  Journal of the Royal Society Interface, 19 (191), 20220257. DOI: 10.1098/rsif.2022.0257
  14. Carter, B. and C. Rinner (2014). Locally weighted linear combination in a vector geographic information system. Journal of Geographical Systems, 16(3), 343-361. DOI: 10.1007/s10109-013-0194-3
  15. Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory 13(1), 21-27. DOI: 10.1109/TIT.1967.1053964
  16. Dale, M. R., P. Dixon, M. J. Fortin, P. Legendre, D. E. Myers and M. S. Rosenberg (2002). Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25(5), 558-577. DOI:10.1034/j.1600-0587.2002.250506.x
  17. Demšar, U., Harris, P., Brunsdon, C., Fotheringham A. S., & McLoone, S. (2013). Principal component analysis on spatial data: an overview. Annals of the Association of American Geographers 103(1), 106-128. DOI: 10.1080/00045608.2012.689236
  18. Desktop, E. A. (2019). ArcGIS Pro. Redlands, CA: Environmental Systems Research Institute.
  19. Faraji Sabokbar, H.A., & Rezaali, M. (2009). Comparison of discrete and continuous spatial models case study: site selection for rural industry in district of torghabeh. Human geography research quarterly, (67), 69-83. [in persian]
  20. Fischer, M. M. & Getis, A. (2010). Handbook of applied spatial analysis: software tools. methods and applications, Springer.
  21. Galdavi, S., Mohammadzadeh, M., Mirkarimi, S. H., & Salmanmahiny, A. (2022). Suitable site selection for urban parks and green spaces development based on mce and ahp approach. Geographical planning of space12(2), 117-132. Doi:10.30488/gps.2022.309469.3459 [in persian]
  22. Gohari, A., Ahmad, A. B., Balasbaneh, A. T., Gohari, A., Hasan, R., & Sholagberu, A. T. (2022). Significance of intermodal freight modal choice criteria: MCDM-based decision support models and SP-based modal shift policies. Transport Policy, DOI: 10.1016/j.tranpol.2022.03.015.
  23. Law, M., & Collins, A. (2019). Getting to know ArcGIS® Pro / Michael Law, Amy Collins. (Second edition). Esri Press.
  24. Liu, M., Qian, Zh., Song, G., & Jikun, H. (2020). The spatial aggregation of rural e-commerce in China: An empirical investigation into Taobao Villages. Journal of Rural Studies, 80, 403-417. DOI: 10.1016/j.jrurstud.2020.10.016
  25. Malczewski, J. (2000). On the use of weighted linear combination method in GIS: common and best practice approaches. Transactions in GIS 4(1), 5-22. DOI: 10.1111/1467-9671.00035
  26. Malczewski, J. (2011). Local weighted linear combination. Transactions in GIS, 15(4), 439-455. DOI: 10.1111/j.1467-9671.2011.01275.x.
  27. Malczewski, J., & Rinner, C. (2005). Exploring multicriteria decision strategies in GIS with linguistic quantifiers: A case study of residential quality evaluation. Journal of Geographical Systems 7(2), 249-268. DOI: 10.1007/s10109-005-0159-2.
  28. Meng, Y., & Malczewski, J. (2015). A GIS-based multicriteria decision making approach for evaluating accessibility to public parks in Calgary, Alberta. Human Geographies 9(1), 29. DOI:10.5719/hgeo.2015.91.3
  29. Miadfar, j., Keshvari, F., Abeshzadeh, K., Kamran, H., Noorisari, H., & Bahmanabadi, M. (2023). Intelligent system for location of the emergency site based on the principles of spatial planning. Geography, 20(75), 191-201. DOI: 20.1001.1.27833739.1401.20.75.10.2 [in persian].
  30. Momenzadeh, Z., Lalantari, S., Tazeh, M., Taghizadeh, R. (2021). Zoning and locating solar power station using AHP and GIS in Yazd province. Journal of Environmental Science and Technology22(12), 259-271. doi: 10.22034/jest.2020.37606.4373 [in persian]
  31. Peterson, L. E. (2009). K-nearest neighbor. Scholarpedia 4(2), 1883.
  32. Ramandeep, R. (2022) Simple Additive Weighting (Saw) Method In Decision Support System Of Service Center Location Using GIS.  Literacy: International Scientific Journals of Social, Education, Humanities 1.1, 5-8. DOI 10.56910/literacy.v1i1.17
  33. Rinner, C. & Heppleston, A. (2006). The spatial dimensions of multi-criteria evaluation–case study of a home buyer’s spatial decision support system. International Conference on Geographic Information Science, Springer. DOI: 10.1007/1186393
  34. Scott, L. M. & M. V. Janikas (2010). Spatial statistics in ArcGIS. Handbook of applied spatial analysis, Springer: 27-41.
  35. Sidhu, A. S., Sehijpal. S., & Raman, K. (2022) Bibliometric analysis of entropy weights method for multi-objective optimization in machining operations.  Materials Today: Proceedings, 50, 1248-1255. DOI: 10.1016/j.matpr.2021.08.132
  36. Silva-Gallegos, J. J., Aguirre-Salado, C. A., Miranda-Aragón, L., Sánchez-Díaz, G., Valdez-Lazalde, J. R., Pedroza-Carneiro, J. W., & Flores-Cano, J. A. (2017). Locating potential zones for cultivating Stevia rebaudiana in Mexico: weighted linear combination approach. Sugar Tech 19(2), 206-218. DOI: 10.3390/land10020125
  37. Singh, M. and M. Pant (2021). A review of selected weighing methods in MCDM with a case study. International Journal of System Assurance Engineering and Management 12(1), 126-144. DOI: 10.1007/s13198-020-01033-3.
  38. Stewart Fotheringham, A., Li, Z., & Wolf, L. J. (2021). Scale, context, and heterogeneity: A spatial analytical perspective on the 2016 US presidential election. Annals of the American Association of Geographers, 111(6), 1602-1621. DOI: 10.1080/24694452.2020.1835459
  39. Tkach, R. J. & Simonovic, S. P. (1997). A new approach to multi-criteria decision making in water resources. J. Geogr. Inf. Decis. Anal, 1(1), 25-43. DOI:10.3390/w11040805.
  40. Tripp Corbin, G. (2015). Learning ArcGIS Pro. Packt Publishing Ltd.
  41. Wagner, H. H. & M.-J. Fortin (2005). Spatial analysis of landscapes: concepts and statistics. Ecology, 86(8), 1975-1987. DOI: 10.1890/04-0914.
  42. Wang, Z.-C., Ran, Y., Chen, Y., Yang, X., & Zhang, G. (2022). Group risk assessment in failure mode and effects analysis using a hybrid probabilistic hesitant fuzzy linguistic MCDM method. Expert Systems with Applications, 188, 116013. DOI: 10.1016/j.eswa.2021.116013
  43. Wu, B., Subbarao, K., Ferrandino, F., Hao, J. (2006). Spatial analysis based on variance of moving window averages. Journal of phytopathology, 154(6), 349-360. DOI: 10.1111/j.1439-0434.2006.01105.x