Analysis of meteorological drought using Triple Diagram Model in the Kurdistan Province, Iran

Document Type : Research Paper


1 Ph.D in Watershed Management and Sciences, Tarbiat Modares University

2 M.Sc in Arid Zone Management

3 M.Sc in Watershed Management, Tarbiat Modares University


Extended Abstract: Introduction: Drought means scarcity of water, which various sectors of human society, agriculture, water supply, industry and environment can adversely affect due to its occurrence. Drought is best characterized by multiple climatological parameters as a natural hazard. An understanding of the spatio-temporal dependence relationships between effective variables on drought is necessary to its description and analysis. Methodology: The main purpose of this study is investigation of climatological drought in synoptic station of the Kurdistan Province, Iran, by using Triple Diagram Model (TDM). The data consists of monthly average temperature, precipitation, and also relative humidity from seven synoptic stations. The standardized precipitation index (SPI) was calculated for each station. The semivariogram of different used models have been analysed and were been chosen using the cross validation method. According to coefficient of determination and residual sum of squares indices appropriate method was selected for drawing triple diagram models. The triple diagram models have been prepared based on geostatistic principles by SPI, Temperature, and relative humidity variables. Discussion: The results indicate that SPI classification is characterized by the scattering in two input variables can provide the analysis framework of the characteristics and variations of climatological factors. Conclusion: The spatial relationship between stations/regions can be carried out by comparison of the humidity conditions. Application of the triple diagram models can be recommended for drought analysis in other climatological stations. The triple diagram plots help to make interpretations in spite of extreme scatter points facilitate the explanations of the influencing trend among variables.


  1. ابونوری، عباسعلی. 1388. تجزیه و تحلیل پدیده خشکسالی کشاورزی شهرستان رامسر به روش تورنث وایت. فضای جغرافیایی. سال نهم. شماره 28. صفحات 1 تا 39.
  2. پیرمرادیان، نادر.،شمس‌نیا، سیدامیر.،شاهرخ‌نیا، محمدعلی. 1387. پایش و تحلیل پراکندگی مکانی شدت خشکسالی سال زراعی 80-1379 استان فارس با استفاده از شاخص معیار شده بارش (SPI) در محیط سامانه اطلاعات جغرافیایی (GIS). مجله مهندسی آب. سال اول. 1(2):65-74.
  3. رضیئی، طیب.، دانش‌کار آراسته، پیمان.، اختری، روح‌ا‌نگیز.، ثقفیان، بهرام. 1386. بررسی خشکسالی هواشناسی (اقلیمی) در استان سیستان و بلوچستان با استفاده از نمایه SPI و مدل زنجیره مارکف. مجله تحقیقات منابع آب ایران. جلد 3، شماره 1. صفحات 25 تا 35.
  4. زارع‌ابیانه، حمید.، یزدانی، وحید.، اژدری، خلیل. 1388. مطالعه تطبیقی چهار نمایه خشکسالی هواشناسی بر پایه عملکرد نسبیمحصول گندم دیم در استان همدان. پژوهش‌های جغرافیای طبیعی. شماره 69. پاییز 1388. صفحات 35 تا 49.
  5. سازمان مدیریت و برنامه ریزی استان کردستان، 1386. سالنامه آماری سنندج: سازمان مدیریت و برنامه ریزی.
  6. سلطانی، سعید.، سعادتی، سیده‌سارا. 1386. پهنه‌بندی خشکسالی در استان اصفهان با استفاده از نمایه بارش استاندارد (SPI). مجله علوم مهندسی آبخیزداری ایران. سال اول. شماره 2. صفحات 64 تا 67.
  7. شعبانی، محمد. 1388. ارزیابی کاربرد روش‌های زمین‌آماری در پهنه‌بندی شدت‌های خشکسالی استان فارس. مجله مهندسی آب. سال دوم. بهار 1388. صفحات 31 تا 36.
  8. شکیبا، علیرضا.،میرباقری، بابک.،خیری، افسانه. 1389. خشکسالی و تأثیر آن بر منابع آب زیرزمینی در شرق استان کرمانشاه با استفاده از شاخص SPI. جغرافیا، تابستان 1389، سال هشتم، شماره 25، صفحات 105 تا 124.
    1. Altunkaynak, A., Ozger, M., and Sen, Z. 2003. Triple diagram model of level fluctuation in Lake Van, Turkey. Hydrology and Earth System Sciences, 7(2), 235–244.

10. Do O.A. 2005. Regional drought analysis and mitigation using the SPI. ICID 21st European Regional Conference, 15-19 May 2005 - Frankfurt (Oder) and Slubice - Germany and Poland. 1-9 p.

11. FAO, 1983. Food and Agriculture Organization. Guidelines: Land evaluation for Rainfed Agriculture. FAO Soils Bulletin, 52, Rome.

12. Isaaks, E.H., and Srivastava, R.M. 1989. An Introduction to Applied Geostatistics,Oxford University Press New York,P:561

13. Kao, Sh., Govindaraju, R.S., and Niyogi, D. 2009. A spatio-temporal drought analysis for the Midwestern US. World Environmental and Water Resources Congress 2009: Great Rivers. American Society of Civil Engineers, ASCE. 4654-4663.

14. Loukas, A. and Vasiliades, L. 2004. Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Natural Hazards and Earth System Sciences, 4:719–731.

15. McKee, T.B., Doesken, N.J.and Kleist, J. 1993. The relationship of drought frequency and duration to time scales, 8th Conference on Applied Climatology. American Meteorological Society, Anaheim, CA.

16. Mishra, A.K. and Singh, V.P. 2010. A review of drought concepts, Journal of Hydrology 391:202–216.

17. Panu, U.S., and Sharma, T.C. 2002. Challenges in drought research: some perspectives and future directions. Journal of Hydrological Science. 47: 19–30.

18. Sen, Z. 2008. Wadi Hydrology. CRC Press, Taylor & Francis Group, 347p.

19. Sirdas, S. and Sen, Z. 2003. Spatio-temporal drought analysis in the Trakya region, Turkey. Hydrological SciencesJournaldes Sciences Hydrologiques, 48(5): 809-820.

20. Szalai, S., Szinell, C. and Zoboki, J. 2000. Drought monitoring in Hungary. In: Early Warning Systems for Drought Preparedness and Drought Management, WMO, Geneva, pp: 161–176.

21. WMO, 1986. World Meteorological Organization. Report on drought and countries affected by drought during 1974–1985, WMO, Geneva, p. 118.