Investigating the relationship between land use and attractions by local entropy model (Case Study: In Isfahan City)

Document Type : Research Paper


student at Tehran University


The usage type of lands that are used for the tourism purposes is having great importance, because tourism is a source based activity. In order to develop tourism activities, tourism planning and determining the environmental capacities - human subjects, is a process that communicates individual leisure with space and location (environments).Space is programmable zone or in the other word, space is a visible or invisible temporal-local volume. Spatial planning is an intellectual process for realization of the spatial planning objectives, according to political action. Existences of many ancient monuments convert Isfahan to one of most important tourism cities in Iran that increases the need for spatial tourism planning. This study is done in order to spatial planning of Isfahan tourism center emphasizing communication among usage of existing sports, medical, green spaces, with tourism attraction. In this study, poly-gon (surface) data of tourist attractions, green spaces, space, sports, health care, parks and parking existing in Isfahan were used. Data are related to the 1385 had been prepared by the municipality and governorates in the separate layers form. The method of research is descriptive analytical and local entropy analysis model was used to answer the research question. The hexagonal lattice as the basic unit was used for combining the basic data, the 500-meter-diameter hexagonal was intended, so 2386 hexagonals covered city. The research method is descriptive - analytical and local entropy analysis model was used to answer the research question.This study attempted to express the influence of some indices on the spatial tourism pattern. Expressed factors are not all of affecting factors, because tourist attractions have close relationship with other factors, such as hotels, restaurants, banks, security and fire units and …but because of the lake of information in this field we tried to evaluate indicators that suggest mentioned model. Results show two components as parking and bus stations in the city are most connected with tourism attractions and Health care institutions have the lowest relationship with tourism attractions that need to be further considered in future planning.


  1. پاپلی یزدی، محمد حسین، گردشگری (ماهیت و مفاهیم)؛ انتشارات سمت، 1386.
  2. تجزیه و تحلیل آماری با Arcview GIS / تالیف {جی، لی. دیوید وانگ}؛ ترجمه محمدرضا حسین نژاد، فریدون قدیمی عروس محله. تهران: دانشگاه علم وصنعت ایران، مرکز انتشارات، 1381.
  3. رضوانی،  علی اضغر،  1382. جغرافیا و صنعت توریسم، تهران: انتشارات دانشگاه پیام نور.
  4. رنجبران، بهرام و زاهدی، محمد ؛ برنامه ریزی توریسم در سطح ملی و منطقه ای، انتشارات جهاد دانشگاهی واحد اصفهان، 1379.
  5. زیاری، کزامت ا...، برنامه ریزی کاربری اراضی شهری" یزد، دانشگاه یزد، 1381.
  6. فرجی سبکبار، حسنعلی، تحلیل نابرابری‌های فضایی سکونتگاههای روستایی ایران، فصلنامه اقتصاد فضا و توسعه روستایی، سال یکم، شماره 1، پاییز 1391، صفحات:  83-100.
  7. قدمی، مصطفی. 1386. مدل سازی توسعه شهری و گردشگری در چارچوب پایداری نمونه مورد مطالعه: شهر کلاردشت، رساله دکتری در رشته جغرافیا و برنامه ریزی شهری، دانشگاه تهران.
  8. موحد، علی. ۱۳۸2. گردشگری پایدار، انتشارات دانشگاه شهید چمران اهواز.
  9. موحد، علی. ۱۳۸۶. گردشگری شهری، انتشارات دانشگاه شهید چمران اهواز، چاپ اول.
    1. Amrhein, C. 1995. Searching for the elusive aggregation effect: evidence from statistical simulations. Environment and planning A, 27(1): 105-119.
    2. Arbia, G. 1989. Spatial data configuration in statistical analysis of regional economic and related problems: Kluwer Academic Dordrecht.
    3. Baller, R. D., Anselin, L., Messne r, S.F., Deane, G., and Hawkins, D.F. 2001. Structural covariates of us county homicide rates: incorporating spatial effects. Criminology, 39(3): 561-588.
    4. Beardwood, J., Halton, J. H.,  and Hammersley, J.M. 1959. The shortest path through many points. Paper presented at the Mathematical Proceedings of the Cambridge Philosophical Society.
    5. Ben-Bassat, M., and Raviv, J. 1978. Renyi's Entropy and the Probability of Error. Information Theory, IEEE Transactions on, 24(3): 324-331.
    6. Benjamini, Y., and Hochberg, Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 289-300.
    7. Cahill, M., and Mulligan, G. 2007. Using geographically weighted regression to explore local crime patterns. Social Science Computer Review, 25(2): 174-193.
    8. Clark, P.J., and Evans, F.C. 1954. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, 35(4): 445-453.
    9. Feng, Xu, 2004. "Modeling the spatial pattern of urban fringe, Case study Hongshan, Wuhan" ITC, Enschede, The Netherlands.
    10. Finklea, K.M. 2011. Economic Downturns and Crime.
    11. Getis, A., and Ord, J. 2000. Seemingly independent tests: addressing the problem of multiple simultaneous and dependent tests. Paper presented at the 39th Annual Meeting of the Western Regional Science Association. Kauai, Hawaii.
    12. Goodchild, M.F. 2011. Scale in GIS: An overview. Geomorphology, 130(1), 5-9.
    13. Graif, C., and Sampson, R. J. 2009. Spatial heterogeneity in the effects of immigration and diversity on neighborhood homicide rates. Homicide Studies, 13(3): 242-260.
    14. Hero III, A.O., Ma, B., Michel, O.J., and Gorman, J. 2002. Applications of entropic spanning graphs. Signal Processing Magazine, IEEE, 19(5): 85-95.
    15. Hero, A., and Michel, O.J. 1999. Estimation of Rényi information divergence via pruned minimal spanning trees. Paper presented at the Higher-Order Statistics, 1999. Proceedings of the IEEE Signal Processing Workshop on.
    16. Hunter, C, and Green, H. 1995. Tourism and the environment: A sustainable relationship?. London and New York: Rutledge.
    17. Kang Shou L.  2001.  A parcel gis-based multinomial logistic model for destination land use prediction, a dissertation presented to the graduate school of Clemson University.
    18. Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R., and Mostashari, F. 2005. A space–time permutation scan statistic for disease outbreak detection. PLoS medicine, 2(3): e59.
    19. Mireczkowski, Z. 1995. Environmental issues of and recreation. Lanharn: University press of America.
    20. Nelson, A.L., Bromley, R.D., and Thomas, C.J. 2001. Identifying micro-spatial and temporal patterns of violent crime and disorder in the British city centre. Applied Geography, 21(3): 249-274.
    21. OECD, 1981. The impact of tourism on the environment. Paris: Organization for Economic Cooperation and Development.
    22. Ralphs, M., Ang, L., and Zealand, S.N. 2009. Optimised geographies for data reporting: zone design tools for census output geographies: Statistics New Zealand.
    23. RRNYI, A. 1961. On measures of entropy and information. Paper presented at the Fourth Berkeley Symposium on Mathematical Statistics and Probability.
    24. Sabel, C.E., Kihal, W., Bard, D., and Weber, C. 2012. Creation of synthetic homogeneous neighbourhoods using zone design algorithms to explore relationships between asthma and deprivation in Strasbourg, France. Social Science & Medicine.
    25. Sainani, K.L. 2009. The problem of multiple testing. PM&R, 1(12): 1098-1103.
    26. Sankoh, A.J., Huque, M.F., and Dubey, S.D. 1997. Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Statistics in medicine, 16 (22): 2529-2542.
    27. Steele, J.M. 1988. Growth rates of Euclidean minimal spanning trees with power weighted edges. The Annals of Probability, 1767-1787.
    28. Wang, D., Ding, W., Lo, H., Stepinski, T., Salazar, J., and Morabito, M. 2012. Crime hotspot mapping using the crime related factors—a spatial data mining approach. Applied Intelligence, 1-10.