Determination of the Effective Factors in Flooding Potential of Darrehshahr Drainage Basin Based on Hydrological Homogeneous Area

Document Type : Research Paper



Reliable estimations of flooding potential are extremely important for flood management in arid and semiarid regions without or lack of data.  One of the most important methods in flooding potential estimation is curve number method (CN) of American Soil Conservation Service (SCS). In this research flooding potential and identifying of effective factors on flooding events at sub-catchments and hydrological homogeneous areas of Darrehshahr drainage basin has been studied and compared. In view of this, the study area classified to three homogenous cluster using cluster analysis. The curve number method was used to estimate runoff and maximum discharge of the sub-catchments and homogeneous clusters. The layers and data including land use, hydrological groups of soil, maximum 24 hours precipitation, the CN measures, infiltration (S), runoff volume (Q) and  maximum discharge (Q max) at each sub-catchment and hydrological homogeneous clusters were calculated. Finally, factor analyses based on 20 parameters were used to identify the effective factors on maximum discharge at sub-catchments and homogeneous clusters. The results showed two physiographic parameters (area and drainage density) in and six physiographic parameters (area, main stream length, sum of streams, basin drainage density, bifurcation ratio and time of concentration) at sub-catchments and hydrological homogeneous regions selected as effective parameters in flooding potential, respectively. In addition, at the hydrological homogeneous regions the parameters including forest area, pasture area and percent area of high infiltration formation were selected as highly loading factors. Therefore, we can conclude that the hydrological homogeneous clusters have higher accuracy than the sub-catchments in the estimation of flooding potential using CN method.


  1. -اداره کل منابع‌طبیعی استان ایلام، 1388. گزارش پوشش گیاهی حوزه آبخیز دره­شهر.

    2-امیدوار، ک.، کیان­فر، آ.، عسکری، ش.ا. 1389. پهنه بندی پتانسیل سیل­خیزی حوزه آبخیز کنجانچم، پژوهش­های جغرافیای طبیعی، شماره 72، 90-73.

    3-سازمان جغرافیایی نیروهای مسلح، نقشه توپوگرافی در مقیاس 50000/1، برگه دره­شهر.

    4-سازمان زمین‌شناسی کشور، نقشه زمین­شناسی در مقیاس 100000/1، شیت کبیر­کوه.

    5-سازمان منابع آب کشور(تماب)، آمار حداکثر بارندگی روزانه 9 ایستگاه مجاور حوضه سراب دره­شهر در طول دوره آماری (1387-1355).

    6-شعبانلو، س.، صدقی، خ.، ثقفیان، ب.، و موسوی جهرمی، ح. 1387. پهنه­بندی سیلاب در شبکه رودخانه‌های استان گلستان با استفاده از GIS، پژوهش آب ایران، سال دوم، شماره سوم، صفحات 22-11.

    7-عطایی، ه.، شیران، م. 1390. شناسایی زیرحوضه­های هیدرولوژیکی همگن از نظر عوامل ژئومورفولوژیک موثر بر سیلاب با استفاده از تحلیل خوشه­ای (مطالعه موردی: دشت کرون)، جغرافیا و برنامه­ریزی محیطی، شماره پیاپی 42، شماره 2، 98-79.

    8-مهدوی، م. 1390. هیدرولوژی کاربردی، جلد دوم، انتشارات دانشگاه تهران، تهران.

    9-مهندسین مشاور آبخیزان، 1388. مطالعات تفصیلی-اجرایی آبخیزداری حوزه آبخیز دره شهر.

    10-مهندسین مشاور فرایند سامانه فرایندهای محیطی، 1378. مطالعات توجیهی آبخیزداری حوزه ­آبخیز سیمره گزارش آب ­زیرزمینی، دفتر مهندسی و ارزیابی طرح­ها معاونت آبخیزداری سازمان جنگل­ها، مراتع و آبخیزداری کشور.

    1. Amutha, R., and Porchelvan, P. 2009. Estimation of surface runoff in Malattar Sub-watershed using SCSCN method, Photonirvachak, J. Indian Soc., Remote Sense, 37: 291–304.
    2. Chow, V.T. 1964. Handbook of applied hydrology. Mcgraw-Hill, N.Y.  
    3. Kline, P. 2001. An Easy Guide for Factor Analysis, London: Routledge.
    4. Gerstengarbe F.W., Werner, P.C. and Fraedrich, K. 1999. Applying Non-Hierarchical Cluster Analysis Algorithms to Climate classification: Some Problems and their Solution, Theor., Appl.,Climatol., 64:143-150.
    5. Gonzalez V., J.C., et al., 2005. Nitrate accumulation and other components of the groundwater in relation to cropping system in and aquifer in southwestern Spain, J. of Water Resources Management, 19:1-22.
      1. Inci Tekel Y. Akguül S. Dengiz O. and Aküzüm T. 2006. Estimation of flood discharge for small watershed using SCS curve number and geographic information system, River BasinFlood Management Journal, 527-538.
      2. Kafman, L., and Rousseeuw, P.J. 1990. Finding Groups in Data, Wiley Pub.
      3. Kumar, S., Ranta, M.J., Praveen, T.V. and Kumar, V. 2010. Analysis of the Run off for Watershed Using SCS-CN Method and Geographic Information Systems. International Journal of Engineering Science and Technology, 2: 3947-3654.
      4. Mishra, S.K., Tyagi, J.V., Singh, V.P., and Singh, R. 2006. SCS-CN-based modeling of sediment yield, Journal of Hydrology, 324:301-322.
      5. Srangi, A., Singh, D.K., and Singh, A.K. 2008, Evaluation of curve number and geomorphology-based models for surface runoff prediction from ungauged watersheds. Water Technology Centre, Indian Agricultural Research Institute, New Delhi 110 012, India, CURRENT SCIENCE. 94:12-25.
      6. Stahl, K. and Demuth, S. 1999. Methods for regional classification of stream flow drought series: cluster analysis, University of Freiburg, Germany.
      7. Zhan, X. and Huang, M. 2004. Arc CN-runoff: An ArcGIS tool for generating curve number and runoff maps, Environ, Modell, Softw, 19: 875–879.