Comparison and validation of land use optimization approaches using new algorithms in the city of Gorgan

Document Type : Research Paper


1 Assistant Professor, Faculty of Natural Resources and Environmental Studies, University of Birjand, Iran.

2 Assistant Professor, University of Ardakan

3 Professor, Agricultural Sciences and Natural Resources of Golestan University


The most important thing in the land use planning is conflict between opposite or rival land uses in one place that should be done by allocation of land uses according to the utility of land and taking into account economic, social and environmental impacts. For this purpose, different approaches are formed which each of them has made efforts to resolve this conflict. This study compared the two optimization approaches such as Multi Objective Land use Allocation (MOLA) and the Multidimensional Choice (MDCHOICE). The maps were prepared using two approaches for the city limits of Gorgan. Then, maps were compared using the statistical methods of land uses utility and ecological assessment by landscape metrics. Results of this comparison based on statistical and ecological parameters showed the superiority of multi-objective the allocation of land use to multidimensional choice approach. Map by the MOLA approach as a reference map and another map by MDCHOICE approach as a comparative map was used in order to validate the results of the previous stage. Finally, the similarity and agreements of maps were evaluated with various algorithms in the software IDRISI and MCK. The results obtained from the use of any of algorithms offered useful indicators like comparing the class to class, cell to cell, and other types of kappa coefficients such as Histo Kappa, place and fuzzy Kappa that additional discussion of comparison methods is raised. Finally, this study suggests that to compare maps that are modeled in different ways or to validate the maps that use different type's kappas that show the agreement on number and place instead of the usual or standard kappa coefficient.


  1. اﻣﯿﺮی، ﻣﺤﻤﺪ ﺟﻮاد، ﺳﻠﻤﺎن ﻣﺎﻫﯿﻨﯽ، ﻋﺒﺪاﻟـﺮﺳﻮل، ﺟﻼﻟﯽ، ﺳﯿﺪﻏﻼﻣﻌلی، ﺣﺴﯿﻨﯽ، ﺳﯿﺪﻣﺤﺴﻦ و  آذری دﻫﮑﺮدی، فرود. 1388. ﻣﻘﺎﯾﺴﻪ روش ﺳﯿﺴﺘﻤﯽ ادﻏﺎم ﻧﻘﺸﻪ­ها و ﺗﺮﮐﯿﺐ ﻣﻨﻄﻖ ﺑﻮﻟﯿﻦ- ﻓﺎزی در ارزﯾﺎﺑﯽ ﺗﻮان اﮐﻮﻟﻮژﯾﮏ ﺟﻨﮕﻞ ﺣﻮﺿﻪﻫﺎی آﺑﺨﯿﺰ 33 و 34 ﺷﻤـﺎل اﯾﺮان، ﻋﻠﻮم ﻣﺤﯿﻄﯽ، ﺳﺎل ﻫﻔﺘﻢ، ﺷﻤـﺎره دوم 109-123، تهران.
  2. سلمان ­ﻣﺎهینی، عبدالرسول و ﻛامیاب، حمیدرضا. (1388). ﺳﻨﺠﺶ از دور و ﺳﺎﻣﺎﻧﻪ اﻃﻼﻋﺎت ﺟﻐﺮافیایی ﻛﺎرﺑﺮدی ﺑـﺎ نرم­اﻓﺰار اﻳﺪرﻳﺴـﻲ، انتشارات مهر مهدیس، چاپ دوم، تهران.
  3. شایگان، مهران، علیمحمدی، عباس و منصوریان، علی. 1392. بهینه­سازی ترکیبی چندهدفه تخصیص کاربری اراضی با استفاده از الگوریتم نیل به مقصود و MOLA. فصلنامه سنجش از دور و GIS ایران. سال پنجم، شماره 1، تهران.
  4. کامیاب، حمیدرضا، ﺳﻠﻤﺎن ﻣﺎﻫﯿﻨﯽ، ﻋﺒﺪاﻟﺮﺳﻮل، شهر آیینی، محمد. (1394). ارتقای روش MOLA با توجه به معیارهای سیمای سرزمین و بهره‌گیری از الگوریتم ژنتیک. مجله آمایش سرزمین. دوره 7، شماره 1. 29-48.
  5. کبودی، عبدالله. 1390. بهینه­سازی روش MOLA در آمایش سرزمین با استفاده از ارزش­های اقتصادی اجتماعی و راهبردی (مطالعه موردی: استان گلستان)، سلمان ماهینی، عبدالرسول، میرکریمی، سیدحــــامد، دانشگاه علوم و کشاورزی منابع طبیعی گرگان، دانشکده شیلات و محیط زیست.
  6. ﻛﺮﻡ، ﻋﺒﺪﺍﻻﻣﻴﺮ.1383. ﮐﺎﺭﺑﺮﺩ ﻣﺪﻝ ﺗﺮﻛﻴﺐ ﺧﻄﻲ ﻭﺯﻳﻦ (WLC) ﺩﺭ ﭘﻬﻨﻪ­ﺑﻨﺪﯼ پتانسیل ﻭﻗﻮﻉ ﺯﻣﻴﻦ ﻟﻐﺰﺵ ﻣﻄﺎﻟﻌﻪ ﻣﻮﺭﺩﻱ؛ ﻣﻨﻄﻘﻪﻱ ﺳﺮﺧﻮﻥ ﺩﺭ ﺍﺳﺘﺎﻥ ﭼﻬﺎﺭ ﻣﺤﺎﻝ ﻭ ﺑﺨﺘﻴﺎﺭﻱ. ﻣﺠﻠﻪ ﺗﻮﺳﻌﻪ ﻭ ﺟﻐﺮﺍﻓﻴﺎ. 131-146.
  7. میرزایی، محسن، ریاحی، علیرضا، ﺳﻠﻤﺎن ﻣﺎهینی، عبدالرسول و غلامعلی فرد، مهدی. 1392. بررسی تغییرات پوشش اراضی استان مازندران با استفاده از سنجه­های سیمای­سرزمین بین سال­های 1389-1363. اکولوژی کاربردی، سال دوم شماره چهارم، اصفهان.
    1. Clark, W.A and Hosking, P.L. 1986. Statistical Methods for Geographers. New York: John Wiley & Sons, 518 p.
    2. Datta, D., Deb, K., Foneseca, C., Lobo, F., and Condado, P. 2007. Multi-Objective evolutionary algorithm for land use management problem. International Journal of Computational Intelligence Research. 3: 371-384.
    3. Deng. J.S., Wang, K., Hong, Y., and Qi, J.G. 2009. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landscape and Urban Planning. 92: 3–4, 187-198.
    4. Gorsevski, P.V. and Jankowski, P. 2010. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Computers & Geoscience. 36: 1005–1020.
    5. Hagen, A. 2003. Fuzzy set approach to assessing similarity of categorical maps. Int. J. Geographical Information Science. 17(3): 235-249.
    6. Hagen A. 2002. Multi-method assessment of map similarity. The AGILE Conference on Geographic Information Science, Palma (Mallorca, Spain) April 25th-27th.
    7. Hajehforooshnia, Sh., Soffianian, A., Mahiny, A.S. and Fakheran, S. 2011. Multi objective land allocation (MOLA) for zoning Ghamishloo wildlife Sanctuary in Iran. Nature Conservation, 19: 254-262.
    8. Herold, M., Scepan, J. and Clarke, K.C. 2002. The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning, 34(8), 1443-1458
    9. Malczewski. J. 2004. GIS-based land-use suitability analysis: A critical overview. Progress in planning. (62), 3-65.
    10. Matthews. k. 2001. Applying Genetic Algorithms to Multi-objective land use planning. The Robert Gordon University.
    11. Nath, S.S., Bolte, J.P., Ross, L.G. and Aguilar-Manjarrez. J. 2000. Applications of geographical information systems (GIS) for spatial decision support in aquaculture. Aqua cultural Engineering (23), 233–278.
    12. Pontius, R.G. 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetric engineering and remote sensing, 66(8), pp.1011-1016.
    13. Pontius, R.G. and Schneider, L.C. 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1-3): 239-248.
    14. Pontius, R.G., and Millones, M. 2008. Problems and solutions for kappa-based indices of agreement. Studying, Modeling and Sense Making of Planet Earth. Mytilene. Greece.
    15. Pontius. R.G., Walker, R., Yao-Kumah, R., Arima. E., Aldrich, S., Caldas, M., and Vergara, D. 2007. Accuracy Assessment for a Simulation Model of Amazonian Deforestation. Annals of the Association of American Geographers. 97(4).
    16. Power, C., Simms, A., and White, R. 2001. Hierarchical fuzzy pattern matching for the regional comparison of land use maps. int. j. geographical information science. 15 (1): 77-100.
    17. Salmanmahini. A & Gholamalifard. M. 2006. Sitting MSW landfills with a weighted linear combination methodology in GIS environment. Int. J. Env. Sci. Tech. 3(4): 435- 445.
    18. Seixas, J., Nunes, J., Lourenco, P., and Corte-Real, J. 2007. Modeling Land-use change, Springer, 181-196.

Xiaoli, L., Chen, Y., and Daoliang, L. 2009. A spatial decision support system for land-use structure optimization, Wseas Transactions on Computers (8): 439-448