The Identification of rain-causing patterns of western Iran

Document Type : Research Paper

Authors

1 Assistant Professor, Climatology, Hakim Sabzevari University

2 Ph.D student of Agricultural Weather and Meteorology, Hakim Sabzevari University

3 M.Sc student of Synoptic Meteorology, Ferdosi University

Abstract

In order to investigate the pattern of the rainy days of western Iran, the daily rainfall data from 17 synoptic stations in Hamedan, Kurdistan and Kermanshah provinces were used during the period of 1992-2012. The following values of geopotential height at 500 hPa for courses extraction and the factors and weather types during the event precipitation factor analysis and cluster surround procedures were identified in the region. To evaluate the weather data more closely related to sea level pressure, geopotential, vertical velocity, specific humidity, zonal and meridional wind components from the Web site of the National Center for Environmental Studies and forecast / climate science (NCEP / NCAR) obtaining and attempting to atmospheric levels were mapping.The results of the factor analysis on data in 500 hPa geopotential showed eleven factors are involved in daily precipitation total area of these eleven factors of 91% (first factor 60%) of the total variance explained it. The results indicate that the formation of a dominant pattern in middle levels and deep the trough on the Black Sea and the Mediterranean is established That formed the core of the system has led to the north of the Red Sea also drawn its spin can bring heavy precipitation and learning area.The sources of moisture in the region can be found in the Mediterranean Sea and the Persian Gulf, which acts as a hybrid and independent. The results also showed that the most effective factor in rainfall in the region is the Sudanese low pressure penetration to the western regions of the Middle East.

Keywords


  1. باعقیده، محمد. انتظاری، علیرضا. علیمردانی، فاطمه. 1391. تحلیل سینوپتیکی بارش­های حوضه­های اترک و گرگان رود (39 بارش فراگیر)، جغرافیا و توسعه، شماره 26: 113-124.
  2. کیانیان، محمدکیا. صالح­پور جم، امین. حاجی‌محمدی، حسن. رسولی، فهمیه. 1395. بررسی و ارتباط خشکسالی و ترسالی‌های غرب ایران با الگوهای سینوپتیکی جو، مجله آمایش جغرافیایی فضا، شماره 22: 175-192.
  3. حلبیان، امیرحسین. 1394. شناسایی الگوهای گردشی بارش­های شدی موجد سیل در منطقه فارس، مجله آمایش جغرافیایی فضا، شماره 18: 31-46.
  4. علیجانی، بهلول. (1372). مکانیزم­های صعود بارندگی‌های ایران، مجله دانشکده ادبیات و علوم انسانی دانشگاه تربیت‌معلم تهران، شماره اول.
  5. علیجانی، بهلول. 1381. اقلیم­شناسی سینوپتیک، چاپ اول، انتشارات سمت، تهران.
  6. کریمی، محمود. فرج­زاده، منوچهر. 1390. شار رطوبت و الگوهای فضایی زمانی منابع تأمین رطوبت بارش­های ایران، نشریه تحقیقات کاربردی علوم جغرافیایی، جلد 19، شماره 22: 109-127.
  7. مرادی، حمیدرضا. 1385. پیش­بینی وقوع سیلاب‌ها بر اساس موقعیت­های سینوپتیکی در ساحل دریای خزر، پژوهش­های جغرافیایی، شماره 55.
  8. نجارسلیقه، محمد. 1380. الگوهای سینوپتیکی بارش‌های تابستانه جنوب­شرقی ایران، تحقیقات جغرافیایی، دوره 16، شماره 3: 114-125.
    1. Bettolli, M., Penalba, O., and Vargas, W. 2010. Synoptic weather types in the south of South America and their relationship to daily rainfall in the core crop-producing region in Argentina, Australian Meteorological and Oceanographic Journal, 60.
    2. Cohen, L., Dean, S., and Renwick, J. 2013. Synoptic weather types for the Ross Sea region, Antarctica, Journal of Climate, 26(2): 636-649.
    3. Davist, R., and Kalkstein, L. 1990. Development of an Automated Spatial Synoptic Climatological Classification, International Journal of Climate, Vol. 10: 769-794.
    4. Kidson, J.W. 2008. an analysis of New Zealand synoptic types and their use in defining weather regimes: Int. J. Climatology. 20: 299-316.
    5. Littmann, T. 2000. An empirical classification of weather types in the Mediterranean Basin and their inter relation with rainfall, J. theo. App. clim., 66: 161-171.
    6. Luo, Y., Wu, M., Ren, F., Li, J., and Wong, W.K. 2016. Synoptic situations of extreme hourly precipitation over China, Journal of Climate, 29(24): 8703-8719.
    7. Michailidou, C., Maheras, P., Arseni, A., and Anagnostopoulou, C. 2009.  A study of weather types at Athens and Thessaloniki and their relationship to circulation types for the cold wet period, part I: two-step cluster analysis, Theoretical and applied climatology, 97.
    8. Santos, J.A., Corte-Real, J., and leite, S.M. 2005. Weather regimes and their connection to the winter rainfall in Portugal: Int. J. Climatology., 25: 33-50.
    9. Sheridan, S.C., and Lee, C.C. 2010. Synoptic climatology and the general circulation model. Prog. Phys. Geography, 34: 101–109.
    10. Smithson, P.A. 1986. Synoptic and dynamic climatology. Phys. Geo., 10: 100–110.
    11. Tamazeiu. R. et al. 2005. winter precipitation variability and Larg-scale circulation patterns in Romania. Journal of theoretical and applied climatology, 81: 193-201.
    12. Wallace, J.M., and Gutzler, D.S. 1981. Tele-connections in the geo-potential height field during the Northern Hemisphere winter: Mon. Weather, 784-812.
    13. Yarnal, B.A., Comrie, C., Frakes, B., and Brown, D.P. 2001, Developments and prospects in synoptic climatology. Int. J. Climatol., 21: 1923–1950.