تعیین نوع رابطه مؤلفه‌های مختلف فرسایش خاک با استفاده از شبیه‌ساز باران در سازند گچساران

نوع مقاله : مقاله علمی پژوهشی

نویسندگان

1 گروه تحقیقات حافظت خاک و آبخیزداری، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی کرمان، سازمان تحقیقات آموزش و ترویج کشاورزی، کرمان، ایران

2 گروه مهندسی آبخیزداری، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، مازندران، ایران

چکیده

تعیین نوع رابطه بین مؤلفه‌های مختلف فرسایش خاک می‌تواند اطلاعات کامل‌تری از نحوه عملکرد این مؤلفه‌ها در حوضه‌های آبخیز مختلف و در کاربری‌های متفاوت ایجاد کند. در این تحقیق به‌منظور تعیین نوع رابطه بین مؤلفه‌های مختلف فرسایش در کاربری‌های مختلف نهشته‌های سازند گچساران، بخشی از حوضه آبخیز کوه گچ شهرستان ایذه با مساحت 1202 هکتار انتخاب گردید. در این تحقیق با استفاده از رگرسیون تک متغیره نوع روابط بین رسوب – رواناب، رسوب – نفوذ، رسوب – شروع آستانه رواناب و فرسایش، رواناب – نفوذ، رواناب – شروع آستانه رواناب و فرسایش، نفوذ – شروع آستانه رواناب و فرسایش تعیین شدند و همچنین به بررسی میزان ارتباط بین آن‌ها نیز پرداخته شد. نمونه‌برداری مؤلفه‌های مختلف فرسایش خاک در 6 نقطه و با 3 تکرار و درشدت‌های مختلف بارش 75/0، 1 و 25/1 میلی‌متر در دقیقه در سه کاربری مرتع، منطقه مسکونی و اراضی کشاورزی به کمک دستگاه شبیه‌ساز باران انجام شد. به‌منظور انجام تحلیل‌های آماری از نرم‌افزار SPSS و EXCEL استفاده گردید. نتایج نشان داد که به‌طورکلی درشدت 75/0 میلی‌متر در دقیقه در هر سه کاربری مرتع، کشاورزی و مسکونی و در ارتباط بین همه مؤلفه‌های مختلف فرسایش خاک در هفت مورد رابطه مثبت و در یازده مورد رابطه منفی وجود دارد و درشدت 1 میلی‌متر در دقیقه در هر سه کاربری مرتع، کشاورزی و مسکونی و در ارتباط بین همه مؤلفه‌های مختلف فرسایش خاک در هفت مورد رابطه مثبت و در یازده مورد رابطه منفی وجود دارد و درشدت 25/1 میلی‌متر در دقیقه در هر سه کاربری مرتع، کشاورزی و مسکونی و در ارتباط بین همه مؤلفه‌های مختلف فرسایش خاک در هشت مورد رابطه مثبت و در ده مورد رابطه منفی وجود دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining the relationship type between different components of soil erosion using rain simulator in Gachsaran Formation

نویسندگان [English]

  • Hamzeh saeediyan 1
  • hamid reza moradi 2
1 Department of Soil Conservation and Watershed Management Research, Kerman Agricultural and Natural Resource Research Center, Agricultural Research, Education and Extension Organization, Kerman, Iran
2 Department of watershed management engineering, college of natural resource, Tarbiat Modares University, Mazandaran, Iran
چکیده [English]

A B S T R A C T
Determining the type of relationship between different components of soil erosion can provide more complete information about the performance of these components in different watersheds and land uses. In this study, in order to determine the type of relationship between different components of soil erosion in different land uses of Gachsaran Formation deposits, a part of Kuhe Gach watershed with an area of 1202 hectares was selected. In this study, using univariate regression, the type of relationships between sediment - runoff, sediment - infiltration, sediment - runoff and erosion threshold, runoff - infiltration, runoff - runoff and erosion threshold, infiltration - runoff and erosion threshold were determined and also, the relationship between them was also examined. Sampling of erosion different components at 6 points with 3 replicates and at different rainfall intensities of 0.75, 1 and 1.25 mm/min in three land uses of the range, residential area and agricultural lands using a rain simulator was performed. SPSS and EXCEL software were used for statistical analysis. The results showed that in general in the intensity of 0.75 mm/min in all three land uses, range, agricultural and residential and in the relationship between all the different components of soil erosion in seven cases, there is a positive relationship and in eleven cases, there is a negative relationship. And at an intensity of 1 mm/min in all three rang, agricultural and residential land uses and in the relationship between all the different components of soil erosion in seven cases, there is a positive relationship and in eleven cases, there is a negative relationship. And at an intensity of 1.25 mm/min in all three uses of the range, agricultural and residential land uses and in the relationship between all the different components of soil erosion in eight cases, there is a positive relationship and in ten cases, a negative relationship.
Extend
ed Abstract
Introduction
Determining the type of relationship between different components of soil erosion can provide more complete information about the performance of these components in different watersheds and land uses. Soil erosion is known as earth cancer due to its intensifying properties and apparent or hidden environmental and social multilateral effects. Preventing soil erosion is vital and necessary to preserve valuable natural wealth. Investigation of runoff and sediment production is one of the main and important processes of soil erosion and loss that it seems necessary to be aware of the characteristics affecting it. Runoff and sediment production due to water erosion depends on factors such as soil texture, building and soil infiltration and rainfall characteristics. Erosion component is an element or component of erosion processes that without having them cannot be analyzed erosion process. By measuring the various components of soil erosion and the relationship between them, in addition to proper analysis of the erosion process, an appropriate understanding of this process and proper evaluation of it can be found. This research provides useful and valuable work to better understand soil erosion processes in the desired watershed and also to provide deeper research in various other basins.
 
Methodology
In this study, in order to determine the type of relationship between different components of soil erosion in different land uses of Gachsaran Formation deposits, a part of Kuhe Gach watershed with an area of ​​1202 hectares was selected. In this study, using univariate regression, the type of relationships between sediment - runoff, sediment - infiltration, sediment - runoff and erosion threshold, runoff - infiltration, runoff - runoff and erosion threshold, infiltration - runoff and erosion threshold were determined and also, the relationship between them was also examined. Sampling of erosion different components at 6 points with 3 replicates and at different rainfall intensities of 0.75, 1 and 1.25 mm/min in three land uses of the range, residential area and agricultural lands using a rain simulator was performed. SPSS and EXCEL software were used for statistical analysis. This rain simulator is suitable for determining the soil erosion characteristics, runoff, water infiltration and soil researches and its use is a standard method for determining the runoff of surface deposits in the field. A total of 18 sediment samples, 18 runoff samples, 18 soil infiltration samples and 18 runoff and erosion threshold samples were performed. SPSS and EXCEL software were used to perform all statistical analyses and then the final models were determined using univariate regression.
 
Results and discussion
The results showed that in general in the intensity of 0.75 mm/min in all three land uses, range, agricultural and residential and in the relationship between all the different components of soil erosion in seven cases, there is a positive relationship and in eleven cases, there is a negative relationship. And at an intensity of 1 mm/min in all three rang, agricultural and residential land uses and in the relationship between all the different components of soil erosion in seven cases, there is a positive relationship and in eleven cases, there is a negative relationship. And at an intensity of 1.25 mm/min in all three uses of the range, agricultural and residential land uses and in the relationship between all the different components of soil erosion in eight cases, there is a positive relationship and in ten cases, a negative relationship.
 
Conclusion
The results of this study showed that erosion different components in Gachsaran Formation have very complex relationships and certainly each watershed has unique relationships in erosion different components.Therefore, with proper knowledge and understanding of the relationships between erosion different components in watersheds, can be reached a basic solution to reduce erosion in different basins. One of the most important reasons for failure in erosion is the lack of understanding of erosion different processes and the relationships that be created between them, which will ultimately lead to poor executive tasks that without being a treatment for erosion in watersheds will only increase the executive costs.
 
Funding
Tarbiat Modares University
 
Authors' contributions
Design, Methodology, Software, Investigation, Writing- Original Draft, Review & Editing, Visualization, Resources:
Hamzeh saeediyan
Project administration, Investigations, Resources, Supervision:
Hamid reza Moradi
 
Conflicts of interest
The authors declared no conflict of interest.
 
Acknowledgments
We are grateful to all the scientific consultants of this paper.

کلیدواژه‌ها [English]

  • Erosion
  • Univariate regression
  • Runoff
  • Sediment
  • Gachsaran formation
  1. احمدی، حسن. (1386). ژئومرفولوژی کاربردی. جلد 1 (فرسایش آبی)، چاپ پنجم، تهران: انتشارات دانشگاه تهران.
  2. علمیزاده، هیوا و سلیمانی، آرزو. (1397). کاربرد منحنی‌های هیپسومتری بی بعد در ارزیابی فرسایش و رسوب‌گذاری (مطالعه موردی: حوضه نچی در استان کردستان). مجله آمایش جغرافیایی فضا، 8(30)، 65-104.
  3. محمدخان، شیرین؛ پیرانی، پریسا؛ ریاهی، سمانه و گراوند، فاطمه. (1398). ارزیابی کارایی مدل آنتروپی در پهنه‌بندی میزان فرسایش با رویکرد ژئومرفولوژیکی (مطالعه موردی، حوضه آبخیز کند در بالادست سد لتیان). مجله آمایش جغرافیایی فضا، 9(34)، 85-98.
  4. Ahmadi, H. (2007). Applied geomorphology. 1 volume (water erosion), fifth edition, Tehran: Tehran university publications. [In Persian]
  5. Assouline, S., & Ben-Hur, M. (2006). Effects of rainfall intensity and slope gradient on the dynamics of interrillerosion during soil surface sealing. Catena, 66, 211-220.
  6. Babur, E., Uslu, Ö. S., Battaglia, M. L., Diatta, A., Fahad, S., Datta, R., Fahad, S., Datta, R., Hye, M., Hussain, G.S., & Danish, S. (2021). Studying soil erosion by evaluating changes in physico-chemical properties of soils under different land-use types. Saudi Society of Agricultural Sciences, 20(3), 190-197.
  7. Baihua, F., Lachlan, T.H., Newham, C.E., & Ramos, S. (2010). A review of surface erosion and sediment delivery models for unsealed roads. Soil Science Society of America Journal. 24(11), 834-840.
  8. Canton, Y., Sole-benet, A., Asensio, C., Chamizo, S., & Puigdefabregas, J. (2009). Aggregate Stability in range sandy soils relationships with runoff and sediment. Catena, 14(8), 192-199.
  9. (2003). Australia advances.Soil cancer, series eight, Internet, P 1.
  10. Elmizada, H., & Soleimani, A. (2018). The Use of Undimensional Hypsometric Curves in the Evaluation of Erosion and Sedimentation (Case Study: Nachy basin in the Province of Kurdistan). Geographical Planning of Space Quarterly Journal, 8(30), 104-65. [In Persian]
  11. Fang, H., Sun, L., & Tang, Z. (2015). Effects of rainfall and slope on runoff, soil erosion and rill development: an experimental study using two loess soils. Hydrological Processes, 29(11), 2649-2658.
  12. Fathizadeh, H., Karimi, H., & Tavakoli, M. (2016). The Role of Sensitivity to Erosion of Geological Formations in Erosion and Sediment Yield (Case Study: Sub-Basins of Doiraj river in ilam province). Journal of Watershed Management, 7(13), 193-208.
  13. Fazlollahi, A. (2006). Investigation of erodibility of quaternary formation in Jajrood by using rainfall simulator. MSc Thesis in Watershed Management Engineering, Tehran University.100pp.
  14. Girmay, G., Sing, B.R., Nyssen, J., & Borrosen, T. (2009). Runoff and sediment associated nutrient losses underdifferent land uses in Tigray. Northern Ethiopia, Journal of Hydrology, 376, 70-80.
  15. Hamidi Nehrani, S., Vaezi, A. R., Mohammadi, M. H., & Saba, G. (2011). Efficency of polyvinyl acetate in reducing runoff and sediment in a marl soil under rainfall events. Iranina Jouirnal of Soil and Water Research, 43(2), 179- 184.
  16. Hasanzadeh, H., Vaezi, A. R., & Mohammadi, M. H. (2013). Runoff variation in the same rainfall events in different soil textures. Jouirnal of Soil and Water Research, 44(3), 243-253.
  17. Herren, R.V., & R. L. Donahue. (1991). The Agricultural Dictionary. Delmar Publications Inc, Pp160.
  18. Jordan, A., & Martinez-ZavalaL. (2008). Soil loss and runoff rates on unpaved forest roads in southern Spainafter simulated rainfall. Forest Ecology and Management, 255, 913-919.
  19. kamphorst, A. (1987). A small rainfall simulator for the determination of soil erodibility. Netherlands Journal of Agricultural Science, 35, 407- 415.
  20. Kinnell, P.I.A. (2005). Raindrop-impact-induced erosion processes and prediction: a review. Hydrological Processes, 19, 2815-2844.
  21. Kramer, G. (2010). Dynamic model of daily rainfall, runoff and sediment yield for a Himalayan watershed. Soil Science Society of America Journal, 36, 951-960.
  22. Mohammad Khan, Sh., Pirani, P., Riahi, S., & Geravand, F. (2019). Evaluation of entropy model efficiency in erosion zoning with geomorphologic approach (Case Study: Kand watershed in Upstream Latian Dam). Geographical Planning of Space Quarterly Journal, 9(34), 85-98. [In Persian]
  23. Mohammadnejad, V., Asghari, S., & emam, H. (2019). Investigation Land use change with Use ofa Pixel-based method and Object-Oriented Method and Analysis of the Effect of Land UseChange on Soil Erosion (Case Study of MaraghehCounty). Quantitative Geomorphological research, 8(1), 160-178.
  24. Morady, H. R., & Saidian, H. (2010). Comparing the Most Important Factors in the Erosion and Sediment Production in Different Land Uses. Journal of Environmental Science and Engineering, 4(11), 1-11.
  25. Morgan, R. (1986). Soil erosion and conservation. Longman scientific and Technical Publisher, 298 Pp.
  26. Morgan, R.P.C. (1995). Soil Erosion and Conservation. Longman, London.
  27. Williams, B. M., Martinez-Menaa S., & Deeksb, L. (2004). Exponential distribution theory and aggregate erosion. Soil Science Society of America Journal, 6, 382-391.
  28. Wu, S.F., Wu, P.T., Feng, H., & Bu, C.F. (2010). Influence of amendments on soil structure and soil loss under simulated rainfall china's loess plateau. African Journal of Biotechnology, 9 (37), 6116-6121.
  29. Zhou, P., Luukkanen, O., Tokola, T., & Nieminen, J. (2008). Effect of vegetation cover on soil erosion in a mountainous watershed. Catena, 75 (3), 319-325.